All tags
Model: "claude-3-5"
Vision Everywhere: Apple AIMv2 and Jina CLIP v2
aimv2-3b jina-clip-v2 tulu-3 llama-3-1 claude-3-5 llama-3-1-70b apple jina allen_ai autoregressive-objectives vision multilinguality multimodality image-generation model-training model-optimization reinforcement-learning fine-tuning model-benchmarking
Apple released AIMv2, a novel vision encoder pre-trained with autoregressive objectives that achieves 89.5% accuracy on ImageNet and integrates joint visual and textual objectives. Jina launched Jina CLIP v2, a multimodal embedding model supporting 89 languages and high-resolution images with efficient Matryoshka embeddings reducing dimensions by 94% with minimal accuracy loss. Allen AI introduced Tülu 3 models based on Llama 3.1 with 8B and 70B parameters, offering 2.5x faster inference and alignment via SFT, DPO, and RLVR methods, competing with Claude 3.5 and Llama 3.1 70B. These developments highlight advances in autoregressive training, vision encoders, and multilingual multimodal embeddings.
Llama 3.1 Leaks: big bumps to 8B, minor bumps to 70b, and SOTA OSS 405b model
llama-3-1-405b llama-3-8b llama-3-70b llama-3-1-8b gpt-4o gpt-4o-mini claude-3-5 qwen-2 meta-ai-fair openai alibaba multilinguality code-generation context-windows model-training synthetic-data benchmarking reasoning fine-tuning model-performance dataset-release swyx philschmid jjitsev lewtun teknium1 adcock_brett
Llama 3.1 leaks reveal a 405B dense model with 128k context length, trained on 39.3M GPU hours using H100-80GB GPUs, and fine-tuned with over 25M synthetic examples. The model shows significant benchmark improvements, especially for the 8B and 70B variants, with some evals suggesting the 70B outperforms GPT-4o. GPT-4o Mini launched as a cost-efficient variant with strong performance but some reasoning weaknesses. Synthetic datasets like NuminaMath enable models such as Alibaba Qwen 2 to surpass GPT-4o and Claude 3.5 in math competitions. Discussions include reasoning task benchmarks and dataset building for improved reasoning.
Cohere Command R+, Anthropic Claude Tool Use, OpenAI Finetuning
c4ai-command-r-plus claude-3 gpt-3.5-turbo gemini mistral-7b gemma-2 claude-3-5 llama-3 vicuna cohere anthropic openai microsoft stability-ai opera-software meta-ai-fair google-deepmind mistral-ai tool-use multilingual-models rag fine-tuning quantum-computing audio-generation local-inference context-windows model-size-analysis model-comparison
Cohere launched Command R+, a 104B dense model with 128k context length focusing on RAG, tool-use, and multilingual capabilities across 10 key languages. It supports Multi-Step Tool use and offers open weights for research. Anthropic introduced tool use in beta for Claude, supporting over 250 tools with new cookbooks for practical applications. OpenAI enhanced its fine-tuning API with new upgrades and case studies from Indeed, SK Telecom, and Harvey, promoting DIY fine-tuning and custom model training. Microsoft achieved a quantum computing breakthrough with an 800x error rate improvement and the most usable qubits to date. Stability AI released Stable Audio 2.0, improving audio generation quality and control. The Opera browser added local inference support for large language models like Meta's Llama, Google's Gemma, and Vicuna. Discussions on Reddit highlighted Gemini's large context window, analysis of GPT-3.5-Turbo model size, and a battle simulation between Claude 3 and ChatGPT using local 7B models like Mistral and Gemma.