All tags
Topic: "cuda"
lots of small launches
gpt-4o claude-3.7-sonnet claude-3.7 claude-3.5-sonnet deepseek-r1 deepseek-v3 grok-3 openai anthropic amazon cloudflare perplexity-ai deepseek-ai togethercompute elevenlabs elicitorg inceptionailabs mistral-ai voice model-releases cuda gpu-optimization inference open-source api model-performance token-efficiency context-windows cuda jit-compilation lmarena_ai alexalbert__ aravsrinivas reach_vb
GPT-4o Advanced Voice Preview is now available for free ChatGPT users with enhanced daily limits for Plus and Pro users. Claude 3.7 Sonnet has achieved the top rank in WebDev Arena with improved token efficiency. DeepSeek-R1 with 671B parameters benefits from the Together Inference platform optimizing NVIDIA Blackwell GPU usage, alongside the open-source DeepGEMM CUDA library delivering up to 2.7x speedups on Hopper GPUs. Perplexity launched a new Voice Mode and a Deep Research API. The upcoming Grok 3 API will support a 1M token context window. Several companies including Elicit, Amazon, Anthropic, Cloudflare, FLORA, Elevenlabs, and Inception Labs announced new funding rounds, product launches, and model releases.
AI Engineer Summit Day 1
grok-3 o3-mini deepseek-r1 qwen-2.5-vl openai anthropic xai togethercompute alibaba sakana-ai benchmarking model-performance cuda model-training open-source debugging inference-speed batch-size reinforcement-learning aidan_mclau giffmana nrehiew_ teortaxestex epochairesearch andrew_n_carr borismpower yuhu_ai_
The AIE Summit in NYC highlighted key talks including Grace Isford's Trends Keynote, Neo4j/Pfizer's presentation, and OpenAI's first definition of Agents. Speakers announced $930 million in funding. On AI Twitter, discussions focused on Grok-3 and o3-mini models, with debates on performance and benchmarking, including Grok-3's record compute scale of 4e26 to 5e26 FLOP. The o3-mini model uncovered a critical CUDA kernel bug in Sakana AI's code. DeepSeek-R1 was promoted as an open-source alternative with notable training batch sizes. Additionally, Alibaba announced the Qwen 2.5-VL model release.
not much happened today
rstar-math o1-preview qwen2.5-plus qwen2.5-coder-32b-instruct phi-4 claude-3.5-sonnet openai anthropic alibaba microsoft cohere langchain weights-biases deepseek rakuten rbc amd johns-hopkins math process-reward-model mcts vision reasoning synthetic-data pretraining rag automation private-deployment multi-step-workflow open-source-dataset text-embeddings image-segmentation chain-of-thought multimodal-reasoning finetuning recursive-self-improvement collaborative-platforms ai-development partnerships cuda triton ai-efficiency ai-assisted-coding reach_vb rasbt akshaykagrawal arankomatsuzaki teortaxestex aidangomez andrewyng
rStar-Math surpasses OpenAI's o1-preview in math reasoning with 90.0% accuracy using a 7B LLM and MCTS with a Process Reward Model. Alibaba launches Qwen Chat featuring Qwen2.5-Plus and Qwen2.5-Coder-32B-Instruct models enhancing vision-language and reasoning. Microsoft releases Phi-4, trained on 40% synthetic data with improved pretraining. Cohere introduces North, a secure AI workspace integrating LLMs, RAG, and automation for private deployments. LangChain showcases a company research agent with multi-step workflows and open-source datasets. Transformers.js demos released for text embeddings and image segmentation in JavaScript. Research highlights include Meta Meta-CoT for enhanced chain-of-thought reasoning, DeepSeek V3 with recursive self-improvement, and collaborative AI development platforms. Industry partnerships include Rakuten with LangChain, North with RBC supporting 90,000 employees, and Agent Laboratory collaborating with AMD and Johns Hopkins. Technical discussions emphasize CUDA and Triton for AI efficiency and evolving AI-assisted coding stacks by Andrew Ng.
Summer of Code AI: $1.6b raised, 1 usable product
ltm-2 llama-3-1-405b gemini-advanced cognition poolside codeium magic google-deepmind nvidia google-cloud long-context model-efficiency custom-hardware cuda training-stack gpu-scaling neural-world-models diffusion-models quantization nat-friedman ben-chess rohan-paul
Code + AI is emphasized as a key modality in AI engineering, highlighting productivity and verifiability benefits. Recent major funding rounds include Cognition AI raising $175M, Poolside raising $400M, Codeium AI raising $150M, and Magic raising $320M. Magic announced their LTM-2 model with a 100 million token context window, boasting efficiency improvements over Llama 3.1 405B by about 1000x cheaper in sequence-dimension algorithm and drastically lower memory requirements. Magic's stack is built from scratch with custom CUDA and no open-source foundations, partnered with Google Cloud and powered by NVIDIA H100 and GB200 GPUs, aiming to scale to tens of thousands of GPUs. Google DeepMind revealed updates to Gemini Advanced with customizable expert "Gems." Neural Game Engines like GameNGen can run DOOM in a diffusion model trained on 0.9B frames. The content also references LLM quantization research by Rohan Paul.
Somebody give Andrej some H100s already
gpt-2 openai fineweb meta-ai-fair nvidia tesla cuda fine-tuning training-time gpu-acceleration convolutional-neural-networks real-time-processing ai-safety ai-regulation andrej-karpathy yann-lecun elon-musk francois-chollet svpino mervenoyann
OpenAI's GPT-2 sparked controversy five years ago for being "too dangerous to release." Now, with FineWeb and llm.c, a tiny GPT-2 model can be trained in 90 minutes for $20 using 8xA100 GPUs, with the full 1.6B model estimated to take 1 week and $2.5k. The project is notable for its heavy use of CUDA (75.8%) aiming to simplify the training stack. Meanwhile, a Twitter debate between Yann LeCun and Elon Musk highlighted the importance of convolutional neural networks (CNNs) in real-time image processing for autonomous driving, with LeCun emphasizing scientific research's role in technological progress. LeCun also criticized AI doomsday scenarios, arguing for cautious optimism about AI safety and regulation.
Ring Attention for >1M Context
gemini-pro gemma-7b gemma-2b deepseek-coder-6.7b-instruct llama-cpp google cuda-mode nvidia polymind deepseek ollama runpod lmstudio long-context ringattention pytorch cuda llm-guessing-game chatbots retrieval-augmented-generation vram-optimization fine-tuning dynamic-prompt-optimization ml-workflows gpu-scaling model-updates liu zaharia abbeel
Google Gemini Pro has sparked renewed interest in long context capabilities. The CUDA MODE Discord is actively working on implementing the RingAttention paper by Liu, Zaharia, and Abbeel, including extensions from the World Model RingAttention paper, with available PyTorch and CUDA implementations. TheBloke Discord discussed various topics including LLM guessing game evaluation, chatbot UX comparisons between Nvidia's Chat with RTX and Polymind, challenges in retrieval-augmented generation (RAG) integration, VRAM optimization, fine-tuning for character roleplay using Dynamic Prompt Optimization (DPO), and model choices like deepseek-coder-6.7B-instruct. There was also discussion on ML workflows on Mac Studio, with preferences for llama.cpp over ollama, and scaling inference cost-effectively using GPUs like the 4090 on Runpod. LM Studio users face manual update requirements for version 0.2.16, which includes support for Gemma models and bug fixes, especially for MacOS. The Gemma 7B model has had performance issues, while Gemma 2B received positive feedback.