All tags
Model: "flashattention-3"
We Solved Hallucinations
gpt-2 flashattention-3 lynx meta-ai-fair nvidia princeton colfax patronus-ai databricks mosaic-ai openai compute-hardware gpu-optimization flashattention llm-evaluation hallucination-detection vision benchmarking synthetic-data model-training karpathy tri_dao giffmana vikhyatk dbrxmosaicai
Reddit's URL structure causes link errors in AI-generated summaries, especially with NSFW content affecting models like Claude and GPT-4. The team fixed this glitch while still leveraging LLMs for summarizing Reddit content. GPT-2 training costs have dramatically dropped to ~$672 using H100 GPUs and software improvements like CUDA and FlashAttention. FlashAttention-3 was released, achieving up to 740 TFLOPS on H100 GPUs, with FP8 nearing 1.2 PFLOPS, developed collaboratively by Meta, NVIDIA, Princeton, and Colfax. Hopper GPUs enable major speedups with new hardware features. Synthetic data may not improve vision tasks, as shown in recent research. The Avocado360 benchmark evaluates vision-language models' ability to detect avocados in images. Lynx, a hallucination detection model for LLMs, was introduced for real-world healthcare and fintech applications, trained by Patronus AI on Databricks Mosaic AI using Composer.
FlashAttention 3, PaliGemma, OpenAI's 5 Levels to Superintelligence
flashattention-3 paligemma-3b gemma-2b numinamath-7b deepseekmath-7b codellama-34b wizardcoder-python-34b-v1.0 chatgpt-3.5 openai together-ai google hugging-face deepseek code-llama attention-mechanisms fp8-training vision prefix-lm superintelligence fine-tuning chain-of-thought tool-integrated-reasoning self-consistency-decoding python coding-capabilities elo-ratings ilya-sutskever lucas-giffman
FlashAttention-3 introduces fast and accurate attention optimized for H100 GPUs, advancing native FP8 training. PaliGemma, a versatile 3B Vision-Language Model (VLM) combining a SigLIP-So400m ViT encoder with the Gemma-2B language model, emphasizes a prefix-LM architecture for improved image-query interaction. OpenAI reveals a framework on levels of superintelligence, signaling progress toward Level 2 and highlighting internal safety disagreements. On Reddit, NuminaMath 7B, fine-tuned from DeepSeekMath-7B, wins the AI Math Olympiad by solving 29 problems using iterative supervised fine-tuning and tool-integrated reasoning. Open-source LLMs like CodeLlama-34b and WizardCoder-Python-34B-V1.0 are closing the coding performance gap with closed models such as ChatGPT-3.5.