All tags
Model: "kunoichi-dpo-v2-7b"
RWKV "Eagle" v5: Your move, Mamba
rwkv-v5 mistral-7b miqu-1-70b mistral-medium llama-2 mistral-instruct-v0.2 mistral-tuna llama-2-13b kunoichi-dpo-v2-7b gpt-4 eleutherai mistral-ai hugging-face llamaindex nous-research rwkv lmsys fine-tuning multilinguality rotary-position-embedding model-optimization model-performance quantization speed-optimization prompt-engineering model-benchmarking reinforcement-learning andrej-karpathy
RWKV v5 Eagle was released with better-than-mistral-7b evaluation results, trading some English performance for multilingual capabilities. The mysterious miqu-1-70b model sparked debate about its origins, possibly a leak or distillation of Mistral Medium or a fine-tuned Llama 2. Discussions highlighted fine-tuning techniques, including the effectiveness of 1,000 high-quality prompts over larger mixed-quality datasets, and tools like Deepspeed, Axolotl, and QLoRA. The Nous Research AI community emphasized the impact of Rotary Position Embedding (RoPE) theta settings on LLM extrapolation, improving models like Mistral Instruct v0.2. Speed improvements in Mistral Tuna kernels reduced token processing costs, enhancing efficiency. The launch of Eagle 7B with 7.52B parameters showcased strong multilingual performance, surpassing other 7B class models.