All tags
Person: "miramurati"
DataComp-LM: the best open-data 7B model/benchmark/dataset
mistral-nemo-12b gpt-4o-mini deepseek-v2-0628 mistral-7b llama-3 gemma-2 qwen-2 datacomp hugging-face openai nvidia mistral-ai deepseek dataset-design scaling-laws model-benchmarking model-performance fine-tuning multilinguality function-calling context-windows open-source-models model-optimization cost-efficiency benchmarking sam-altman guillaume-lample philschmid miramurati
DataComp team released a competitive 7B open data language model trained on only 2.5T tokens from the massive DCLM-POOL dataset of 240 trillion tokens, showing superior scaling trends compared to FineWeb. OpenAI launched GPT-4o mini, a cost-effective model with 82% MMLU and performance near GPT-4-Turbo, aimed at developers for broad applications. NVIDIA and Mistral jointly released the Mistral NeMo 12B model featuring a 128k token context window, FP8 checkpoint, multilingual support, and Apache 2.0 licensing. DeepSeek announced DeepSeek-V2-0628 as the top open-source model on the LMSYS Chatbot Arena leaderboard with strong rankings in coding, math, and hard prompts. This news highlights advances in dataset design, model efficiency, and open-source contributions in the AI community.
Francois Chollet launches $1m ARC Prize
gpt-4 chatgpt openai apple togethercompute benchmarking agi pattern-recognition skill-acquisition privacy on-device-ai mixed-precision-quantization mixture-of-experts multimodality agentic-ai francois-chollet karpathy svpino philschmid clementdelangue sama gdb miramurati kevin-weil sarah-friar
François Chollet critiques current paths to AGI, emphasizing the importance of benchmarks that resist saturation and focus on skill acquisition and open-ended problem solving. The ARC-AGI puzzles exemplify "easy for humans, hard for AI" challenges to measure progress toward AGI. Meanwhile, Apple announces integration of ChatGPT into iOS, iPadOS, and macOS through a partnership with OpenAI, enabling AI-powered features like document summarization and photo analysis with privacy-preserving measures. Discussions highlight Apple's focus on deep AI integration and on-device models optimized with techniques like mixed-precision quantization, though some skepticism remains about their AI capabilities compared to GPT-4. Additionally, Together Compute introduces a Mixture of Agents approach achieving strong performance on AlpacaEval 2.0.