All tags
Model: "mistral-next"
One Year of Latent Space
gemini-1.5 gemma-7b mistral-next opus-v1 orca-2-13b nous-hermes-2-dpo-7b google-deepmind nous-research mistral-ai hugging-face nvidia langchain jetbrains ai-ethics bias-mitigation fine-tuning performance-optimization model-merging knowledge-transfer text-to-3d ai-hallucination hardware-optimization application-development vulnerability-research jim-keller richard-socher
Latent Space podcast celebrated its first anniversary, reaching #1 in AI Engineering podcasts and 1 million unique readers on Substack. The Gemini 1.5 image generator by Google DeepMind sparked controversy over bias and inaccurate representation, leading to community debates on AI ethics. Discussions in TheBloke and LM Studio Discords highlighted AI's growing role in creative industries, especially game development and text-to-3D tools. Fine-tuning and performance optimization of models like Gemma 7B and Mistral-next were explored in Nous Research AI and Mistral Discords, with shared solutions including learning rates and open-source tools. Emerging trends in AI hardware and application development were discussed in CUDA MODE and LangChain AI Discords, including critiques of Nvidia's CUDA by Jim Keller and advancements in reducing AI hallucinations hinted by Richard Socher.
Companies liable for AI hallucination is Good Actually for AI Engineers
mistral-next large-world-model sora babilong air-canada huggingface mistral-ai quantization retrieval-augmented-generation fine-tuning cuda-optimization video-generation ai-ethics dataset-management open-source community-driven-development andrej-karpathy
Air Canada faced a legal ruling requiring it to honor refund policies communicated by its AI chatbot, setting a precedent for corporate liability in AI engineering accuracy. The tribunal ordered a refund of $650.88 CAD plus damages after the chatbot misled a customer about bereavement travel refunds. Meanwhile, AI community discussions highlighted innovations in quantization techniques for GPU inference, Retrieval-Augmented Generation (RAG) and fine-tuning of LLMs, and CUDA optimizations for PyTorch models. New prototype models like Mistral-Next and the Large World Model (LWM) were introduced, showcasing advances in handling large text contexts and video generation with models like Sora. Ethical and legal implications of AI autonomy were debated alongside challenges in dataset management. Community-driven projects such as the open-source TypeScript agent framework bazed-af emphasize collaborative AI development. Additionally, benchmarks like BABILong for up to 10M context evaluation and tools from karpathy were noted.