All tags
Model: "nemotron-nano-2"
not much happened today
kimi-k2 qwen3-next nemotron-nano-2 granite-4.0 gpt-4.5 copilot codex vllm perplexity-ai ibm anthropic graphiti claude cursor-ai microsoft mixture-of-experts model-integration cloud-computing hybrid-models benchmarking agent-systems memory-persistence semantic-search code-retrieval context-length-optimization tool-use evaluation-frameworks software-development scaling01 cedric_chee aravsrinivas omarsar0 _avichawla pierceboggan jo_parkhurst jyangballin ofirpress ml_angelopoulos
Kimi-K2 Reasoner has been integrated into vLLM and will soon be supported by SGLang, featuring a massive 1.2 trillion parameter MoE configuration. Perplexity AI released research on cloud-portable trillion-parameter MoE kernels optimized for AWS EFA, with potential integration into vLLM. IBM's vLLM team formalized hybrid dense and sparse expert models, supporting models like Qwen3-Next, Nemotron Nano 2, and Granite 4.0. Kimi-K2 reportedly scores 77% on GPQA Diamond, outperforming GPT-4.5 at 71.4%, though this is unverified.
Anthropic published a guide on efficient tool-heavy agent systems using MCP patterns, drastically reducing context tokens by ~98.7%. Graphiti MCP demonstrated shared memory across apps like Claude Desktop and Cursor for persistent agent memory. VS Code introduced an "Agent sessions" feature to unify agent management, including Copilot and Codex. Cursor AI improved coding accuracy via semantic search and code retrieval embeddings. New evaluation frameworks like CodeClash and LMArena assess agent and coding model performance in realistic multi-round tasks and occupation-tagged leaderboards.
not much happened today
nemotron-nano-2 gpt-oss-120b qwen3 llama-3 minimax-m2 glm-4.6-air gemini-2.5-flash gpt-5.1-mini tahoe-x1 vllm_project nvidia mistral-ai baseten huggingface thinking-machines deeplearningai pytorch arena yupp-ai zhipu-ai scaling01 stanford transformer-architecture model-optimization inference distributed-training multi-gpu-support performance-optimization agents observability model-evaluation reinforcement-learning model-provenance statistical-testing foundation-models cancer-biology model-fine-tuning swyx dvilasuero _lewtun clementdelangue zephyr_z9 skylermiao7 teortaxestex nalidoust
vLLM announced support for NVIDIA Nemotron Nano 2, featuring a hybrid Transformer–Mamba design and tunable "thinking budget" enabling up to 6× faster token generation. Mistral AI Studio launched a production platform for agents with deep observability. Baseten reported high throughput (650 TPS) for GPT-OSS 120B on NVIDIA hardware. Hugging Face InspectAI added inference provider integration for cross-provider evaluation. Thinking Machines Tinker abstracts distributed fine-tuning for open-weight LLMs like Qwen3 and Llama 3. In China, MiniMax M2 shows competitive performance with top models and is optimized for agents and coding, while Zhipu GLM-4.6-Air focuses on reliability and scaling for coding tasks. Rumors suggest Gemini 2.5 Flash may be a >500B parameter MoE model, and a possible GPT-5.1 mini reference appeared. Outside LLMs, Tahoe-x1 (3B) foundation model achieved SOTA in cancer cell biology benchmarks. Research from Stanford introduces a method to detect model provenance via training-order "palimpsest" with strong statistical guarantees.