All tags
Topic: "web-crawling"
not much happened today
llama-3-1 claude-3-5-sonnet llama-3-1-405b ltm-2-mini qwen2-vl gpt-4o-mini meta-ai-fair hugging-face magic-ai-labs lmsys alibaba openai long-context style-control multimodality ai-safety model-evaluation web-crawling pdf-processing ai-hype-cycles call-center-automation sam-altman ajeya-cotra fchollet rohanpaul_ai philschmid
Meta announced significant adoption of LLaMA 3.1 with nearly 350 million downloads on Hugging Face. Magic AI Labs introduced LTM-2-Mini, a long context model with a 100 million token context window, and a new evaluation method called HashHop. LMSys added style control to their Chatbot Arena leaderboard, improving rankings for models like Claude 3.5 Sonnet and LLaMA 3.1 405B. Alibaba released Qwen2-VL, a multimodal LLM under Apache 2.0 license, competitive with GPT-4o mini. OpenAI CEO Sam Altman announced collaboration with the US AI Safety Institute for pre-release model testing. Discussions on AI safety and potential AI takeover risks were highlighted by Ajeya Cotra. Tools like firecrawl for web crawling and challenges in PDF processing were noted. AI hype cycles and market trends were discussed by François Chollet, and potential AI disruption in call centers was shared by Rohan Paul.
1/3/2024: RIP Coqui
sdxl diffusers-0.25 coqui mozilla hugging-face google text-to-speech performance-optimization token-management transformer-architecture image-datasets web-crawling pytorch leaderboards
Coqui, a prominent open source text-to-speech project from the Mozilla ML group, officially shut down. Discussions in the HuggingFace Discord highlighted skepticism about the claimed
3X faster
speed of sdxl, attributing improvements more to techniques like torch.compile
and removal of fp16
and attention
rather than diffusers 0.25 features. Users confirmed that a HuggingFace user token can be used across multiple machines, though distinct tokens are recommended for safety. The Learning Loss Minimization (LLM) Leaderboard briefly experienced issues but was later confirmed operational. A Kaggle notebook was shared demonstrating how to build Transformer architectures from scratch using PyTorch. Additionally, a new image dataset with 15k shoe, sandal, and boot images was introduced for multiclass classification tasks. Explanations about the workings of the Common Crawl web-crawling process were also shared.