All tags
Model: "yi-34b-200k"
Mistral Large 2 + RIP Mistral 7B, 8x7B, 8x22B
mistral-large-2 mistral-nemo-12b llama-3.1-8b llama-3.1-70b llama-3.1 llama-3-405b yi-34b-200k gpt-4o mistral-ai meta-ai-fair groq togethercompute code-generation math function-calling reasoning context-windows model-deprecation pretraining posttraining benchmarking
Mistral Large 2 introduces 123B parameters with Open Weights under a Research License, focusing on code generation, math performance, and a massive 128k context window, improving over Mistral Large 1's 32k context. It claims better function calling capabilities than GPT-4o and enhanced reasoning. Meanwhile, Meta officially released Llama-3.1 models including Llama-3.1-70B and Llama-3.1-8B with detailed pre-training and post-training insights. The Llama-3.1 8B model's 128k context performance was found underwhelming compared to Mistral Nemo and Yi 34B 200K. Mistral is deprecating older Apache open-source models, focusing on Large 2 and Mistral Nemo 12B. The news also highlights community discussions and benchmarking comparisons.
Adept Fuyu-Heavy: Multimodal model for Agents
fuyu-heavy fuyu-8b gemini-pro claude-2 gpt4v gemini-ultra deepseek-coder-33b yi-34b-200k goliath-120b mistral-7b-instruct-v0.2 mamba rwkv adept hugging-face deepseek mistral-ai nous-research multimodality visual-question-answering direct-preference-optimization benchmarking model-size-estimation quantization model-merging fine-tuning instruct-tuning rms-optimization heterogeneous-ai-architectures recurrent-llms contrastive-preference-optimization
Adept launched Fuyu-Heavy, a multimodal model focused on UI understanding and visual QA, outperforming Gemini Pro on the MMMU benchmark. The model uses DPO (Direct Preference Optimization), gaining attention as a leading tuning method. The size of Fuyu-Heavy is undisclosed but estimated between 20B-170B parameters, smaller than rumored frontier models like Claude 2, GPT4V, and Gemini Ultra. Meanwhile, Mamba was rejected at ICLR for quality concerns. In Discord discussions, DeepSeek Coder 33B was claimed to outperform GPT-4 in coding tasks, and deployment strategies for large models like Yi-34B-200K and Goliath-120B were explored. Quantization debates highlighted mixed views on Q8 and EXL2 quants. Fine-tuning and instruct-tuning of Mistral 7B Instruct v0.2 were discussed, alongside insights on RMS optimization and heterogeneous AI architectures combining Transformers and Selective SSM (Mamba). The potential of recurrent LLMs like RWKV and techniques like Contrastive Preference Optimization (CPO) were also noted.