All tags
Topic: "ai-ethics"
The AI Nobel Prize
claude-3.5-sonnet reka-flash got openai anthropic reka-ai zep artificial-neural-networks nobel-prize knowledge-graphs memory-layers real-time-voice-api vision fine-tuning prompt-caching multimodality function-calling ocr open-source single-sign-on software-testing ai-assisted-coding ai-ethics geoff-hinton john-hopfield philschmid alexalbert mervenoyann clementdelangue svpino bindureddy ylecun rohanpaul_ai
Geoff Hinton and John Hopfield won the Nobel Prize in Physics for their work on Artificial Neural Networks. The award citation spans 14 pages highlighting their contributions. Zep released a new community edition of their low-latency memory layer for AI agents, emphasizing knowledge graphs for memory. At OpenAI's DevDay, new features like real-time voice API, vision model fine-tuning, and prompt caching with a 50% discount on reused tokens were introduced. Anthropic's Claude 3.5 Sonnet was recognized as the best model currently. Reka AI Labs updated their Reka Flash model with enhanced multimodal and function calling capabilities. The GOT (Generic OCR Transformer) achieved 98.79% accuracy on OCR benchmarks. Discussions on open-source AI models highlighted their role in fostering competition and decentralization. Software development insights included the importance of Single Sign-On (SSO), thorough testing, and AI-assisted coding workflows. Ethical and societal topics covered critiques of tax policies and the appointment of France's first Minister of AI.
Claude 3 is officially America's Next Top Model
claude-3-opus claude-3-sonnet claude-3-haiku gpt-4o-mini mistral-7b qwen-72b anthropic mistral-ai huggingface openrouter stable-diffusion automatic1111 comfyui fine-tuning model-merging alignment ai-ethics benchmarking model-performance long-context cost-efficiency model-evaluation mark_riedl ethanjperez stuhlmueller ylecun aravsrinivas
Claude 3 Opus outperforms GPT4T and Mistral Large in blind Elo rankings, with Claude 3 Haiku marking a new cost-performance frontier. Fine-tuning techniques like QLoRA on Mistral 7B and evolutionary model merging on HuggingFace models are highlighted. Public opinion shows strong opposition to ASI development. Research supervision opportunities in AI alignment are announced. The Stable Diffusion 3 (SD3) release raises workflow concerns for tools like ComfyUI and automatic1111. Opus shows a 5% performance dip on OpenRouter compared to the Anthropic API. A new benchmark stresses LLM recall at long contexts, with Mistral 7B struggling and Qwen 72b performing well.
... and welcome AI Twitter!
mistral-large google-gemini google openai apple stripe ai-ethics multilinguality on-device-ai convolutional-neural-networks synthetic-data financial-transaction-systems corporate-culture humor margaret-mitchell john-carmack guillaume-lample sundar-pichai delip-rao santiago-l-valdarrama alex-wang yann-lecun pieter-levels francois-chollet dheliat
The AI Twitter discourse from 2/27-28/2024 covers a broad spectrum including ethical considerations highlighted by Margaret Mitchell around Google Gemini's launch, and John Carmack's insights on evolving coding skills in the AI era. Guillaume Lample announced the release of the Mistral Large multilingual model. Discussions also touched on potential leadership changes at Google involving Sundar Pichai, and OpenAI's possible entry into the synthetic data market as noted by Delip Rao. Technological advancements include Yann LeCun's commentary on running LLMs on mobile devices and Alex Wang's praise for the Apple Vision Pro. Financial platform issues were raised by Pieter Levels regarding Stripe's payment policies. The cultural dynamics within big tech were discussed by François Chollet and Dhéliat. The lighter side of AI was represented by memes and humor from Pieter Levels and AISafetyMemes. This summary reflects the fast-evolving AI landscape blending technical innovation, corporate strategy, ethics, and community culture.
One Year of Latent Space
gemini-1.5 gemma-7b mistral-next opus-v1 orca-2-13b nous-hermes-2-dpo-7b google-deepmind nous-research mistral-ai hugging-face nvidia langchain jetbrains ai-ethics bias-mitigation fine-tuning performance-optimization model-merging knowledge-transfer text-to-3d ai-hallucination hardware-optimization application-development vulnerability-research jim-keller richard-socher
Latent Space podcast celebrated its first anniversary, reaching #1 in AI Engineering podcasts and 1 million unique readers on Substack. The Gemini 1.5 image generator by Google DeepMind sparked controversy over bias and inaccurate representation, leading to community debates on AI ethics. Discussions in TheBloke and LM Studio Discords highlighted AI's growing role in creative industries, especially game development and text-to-3D tools. Fine-tuning and performance optimization of models like Gemma 7B and Mistral-next were explored in Nous Research AI and Mistral Discords, with shared solutions including learning rates and open-source tools. Emerging trends in AI hardware and application development were discussed in CUDA MODE and LangChain AI Discords, including critiques of Nvidia's CUDA by Jim Keller and advancements in reducing AI hallucinations hinted by Richard Socher.
Companies liable for AI hallucination is Good Actually for AI Engineers
mistral-next large-world-model sora babilong air-canada huggingface mistral-ai quantization retrieval-augmented-generation fine-tuning cuda-optimization video-generation ai-ethics dataset-management open-source community-driven-development andrej-karpathy
Air Canada faced a legal ruling requiring it to honor refund policies communicated by its AI chatbot, setting a precedent for corporate liability in AI engineering accuracy. The tribunal ordered a refund of $650.88 CAD plus damages after the chatbot misled a customer about bereavement travel refunds. Meanwhile, AI community discussions highlighted innovations in quantization techniques for GPU inference, Retrieval-Augmented Generation (RAG) and fine-tuning of LLMs, and CUDA optimizations for PyTorch models. New prototype models like Mistral-Next and the Large World Model (LWM) were introduced, showcasing advances in handling large text contexts and video generation with models like Sora. Ethical and legal implications of AI autonomy were debated alongside challenges in dataset management. Community-driven projects such as the open-source TypeScript agent framework bazed-af emphasize collaborative AI development. Additionally, benchmarks like BABILong for up to 10M context evaluation and tools from karpathy were noted.
CodeLLama 70B beats GPT4 on HumanEval
codellama miqu mistral-medium llama-2-70b aphrodite-engine mixtral flatdolphinmaid noromaid rpcal chatml mistral-7b activation-beacon eagle-7b rwkv-v5 openhermes2.5 nous-hermes-2-mixtral-8x7b-dpo imp-v1-3b bakllava moondream qwen-vl meta-ai-fair ollama nous-research mistral-ai hugging-face ai-ethics alignment gpu-optimization direct-prompt-optimization fine-tuning cuda-programming optimizer-technology quantization multimodality context-length dense-retrieval retrieval-augmented-generation multilinguality model-performance open-source code-generation classification vision
Meta AI surprised the community with the release of CodeLlama, an open-source model now available on platforms like Ollama and MLX for local use. The Miqu model sparked debate over its origins, possibly linked to Mistral Medium or a fine-tuned Llama-2-70b, alongside discussions on AI ethics and alignment risks. The Aphrodite engine showed strong performance on A6000 GPUs with specific configurations. Role-playing AI models such as Mixtral and Flatdolphinmaid faced challenges with repetitiveness, while Noromaid and Rpcal performed better, with ChatML and DPO recommended for improved responses. Learning resources like fast.ai's course were highlighted for ML/DL beginners, and fine-tuning techniques with optimizers like Paged 8bit lion and adafactor were discussed.
At Nous Research AI, the Activation Beacon project introduced a method for unlimited context length in LLMs using "global state" tokens, potentially transforming retrieval-augmented models. The Eagle-7B model, based on RWKV-v5, outperformed Mistral in benchmarks with efficiency and multilingual capabilities. OpenHermes2.5 was recommended for consumer hardware due to its quantization methods. Multimodal and domain-specific models like IMP v1-3b, Bakllava, Moondream, and Qwen-vl were explored for classification and vision-language tasks. The community emphasized centralizing AI resources for collaborative research.