All tags
Topic: "context-caching"
Too Cheap To Meter: AI prices cut 50-70% in last 30 days
gpt-4o gpt-4o-mini llama-3-1-405b mistral-large-2 gemini-1.5-flash deepseek-v2 sonnet-3.5 exaone-3.0 minicpm-v-2.6 claude-3.5 gpt-4o-2024-08-06 llamaindex together-ai deepinfra deepseek-ai mistral-ai google-deepmind lg-ai-research llamaindex llamaindex llamaindex price-cuts context-caching instruction-tuning vision benchmarks pytorch attention-mechanisms reinforcement-learning-from-human-feedback compute-optimal-scaling rohanpaul_ai akhaliq mervenoyann sophiamyang chhillee karpathy
Gemini 1.5 Flash has cut prices by approximately 70%, offering a highly competitive free tier of 1 million tokens per minute at $0.075/mtok, intensifying the AI model price war. Other significant price reductions include GPT-4o (~50% cut to $2.50/mtok), GPT-4o mini (70-98.5% cut to $0.15/mtok), Llama 3.1 405b (46% cut to $2.7/mtok), and Mistral Large 2 (62% cut to $3/mtok). Deepseek v2 introduced context caching, reducing input token costs by up to 90% to $0.014/mtok. New model releases include Llama 3.1 405b, Sonnet 3.5, EXAONE-3.0 (7.8B instruction-tuned by LG AI Research), and MiniCPM V 2.6 (vision-language model combining SigLIP 400M and Qwen2-7B). Benchmarks show Mistral Large performing well on ZebraLogic and Claude-3.5 leading LiveBench. FlexAttention, a new PyTorch API, simplifies and optimizes attention mechanisms. Andrej Karpathy analyzed RLHF, highlighting its limitations compared to traditional reinforcement learning. Google DeepMind research on compute-optimal scaling was also summarized.
Gemini launches context caching... or does it?
nemotron llama-3-70b chameleon-7b chameleon-34b gemini-1.5-pro deepseek-coder-v2 gpt-4-turbo claude-3-opus gemini-1.5-pro nvidia meta-ai-fair google deepseek hugging-face context-caching model-performance fine-tuning reinforcement-learning group-relative-policy-optimization large-context model-training coding model-release rohanpaul_ai _philschmid aman-sanger
Nvidia's Nemotron ranks #1 open model on LMsys and #11 overall, surpassing Llama-3-70b. Meta AI released Chameleon 7B/34B models after further post-training. Google's Gemini introduced context caching, offering a cost-efficient middle ground between RAG and finetuning, with a minimum input token count of 33k and no upper limit on cache duration. DeepSeek launched DeepSeek-Coder-V2, a 236B parameter model outperforming GPT-4 Turbo, Claude-3-Opus, and Gemini-1.5-Pro in coding tasks, supporting 338 programming languages and extending context length to 128K. It was trained on 6 trillion tokens using the Group Relative Policy Optimization (GRPO) algorithm and is available on Hugging Face with a commercial license. These developments highlight advances in model performance, context caching, and large-scale coding models.