All tags
Model: "llama-3-2"
Llama 4's Controversial Weekend Release
llama-4 llama-3 llama-3-2 meta mixture-of-experts early-fusion attention-mechanisms fp8-training training-data benchmarking model-performance model-release multimodality open-models ahmad_al_dahle ylecun reach_vb yuchenj_uw
Meta released Llama 4, featuring two new medium-size MoE open models and a promised 2 Trillion parameter "behemoth" model, aiming to be the largest open model ever. The release included advanced training techniques like Chameleon-like early fusion with MetaCLIP, interleaved chunked attention without RoPE, native FP8 training, and training on up to 40 trillion tokens. Despite the hype, the release faced criticism for lack of transparency compared to Llama 3, implementation issues, and poor performance on some benchmarks. Meta leadership, including Ahmad Al Dahle, denied allegations of training on test sets. The smallest Scout model at 109B parameters is too large for consumer GPUs, and the claimed 10 million token context is disputed. The community response has been mixed, with some praising the openness and others pointing out discrepancies and quality concerns.
Pixtral Large (124B) beats Llama 3.2 90B with updated Mistral Large 24.11
pixtral-large mistral-large-24.11 llama-3-2 qwen2.5-7b-instruct-abliterated-v2-gguf qwen2.5-32b-q3_k_m vllm llama-cpp exllamav2 tabbyapi mistral-ai sambanova nvidia multimodality vision model-updates chatbots inference gpu-optimization quantization performance concurrency kv-cache arthur-mensch
Mistral has updated its Pixtral Large vision encoder to 1B parameters and released an update to the 123B parameter Mistral Large 24.11 model, though the update lacks major new features. Pixtral Large outperforms Llama 3.2 90B on multimodal benchmarks despite having a smaller vision adapter. Mistral's Le Chat chatbot received comprehensive feature updates, reflecting a company focus on product and research balance as noted by Arthur Mensch. SambaNova sponsors inference with their RDUs offering faster AI model processing than GPUs. On Reddit, vLLM shows strong concurrency performance on an RTX 3090 GPU, with quantization challenges noted in FP8 kv-cache but better results using llama.cpp with Q8 kv-cache. Users discuss performance trade-offs between vLLM, exllamav2, and TabbyAPI for different model sizes and batching strategies.
Tencent's Hunyuan-Large claims to beat DeepSeek-V2 and Llama3-405B with LESS Data
claude-3.5-haiku llama-3-1 llama-3-2 mlx-lm tencent anthropic meta-ai-fair togethercompute llamaindex mixture-of-experts synthetic-data model-scaling model-architecture model-optimization kv-cache-quantization react fine-tuning scaling-laws model-efficiency model-deployment multimodality
Tencent released a notable >300B parameter MoE model pretrained on 7T tokens, including 1.5T synthetic data generated via Evol-Instruct. The model introduces novel techniques like "recycle routing" and expert-specific learning rates, alongside a compute-efficient scaling law for MoE active parameters. However, its custom license restricts use in the EU and by companies with over 100M MAU, and it avoids China-sensitive queries. Meanwhile, Anthropic launched Claude 3.5 Haiku, now available on multiple platforms, praised for intelligence and speed but criticized for a 10x price increase. Meta opened Llama AI to the U.S. defense sector, and a Llama Impact Hackathon offers a $15K prize for projects using Llama 3.1 & 3.2 Vision. LlamaIndex released a React chat UI component with Tailwind CSS and LLM backend integrations. The MLX LM model advances text generation speed and efficiency with KV cache quantization.
not much happened today
smollm2 llama-3-2 stable-diffusion-3.5 claude-3.5-sonnet gemini openai anthropic google meta-ai-fair suno-ai perplexity-ai on-device-ai model-performance robotics multimodality ai-regulation model-releases natural-language-processing prompt-engineering agentic-ai ai-application model-optimization sam-altman akhaliq arav-srinivas labenz loubnabenallal1 alexalbert fchollet stasbekman svpino rohanpaul_ai hamelhusain
ChatGPT Search was launched by Sam Altman, who called it his favorite feature since ChatGPT's original launch, doubling his usage. Comparisons were made between ChatGPT Search and Perplexity with improvements noted in Perplexity's web navigation. Google introduced a "Grounding" feature in the Gemini API & AI Studio enabling Gemini models to access real-time web information. Despite Gemini's leaderboard performance, developer adoption lags behind OpenAI and Anthropic. SmolLM2, a new small, powerful on-device language model, outperforms Meta's Llama 3.2 1B. A Claude desktop app was released for Mac and Windows. Meta AI announced robotics advancements including Meta Sparsh, Meta Digit 360, and Meta Digit Plexus. Stable Diffusion 3.5 Medium, a 2B parameter model with a permissive license, was released. Insights on AGI development suggest initial inferiority but rapid improvement. Anthropic advocates for early targeted AI regulation. Discussions on ML specialization predict training will concentrate among few companies, while inference becomes commoditized. New AI tools include Suno AI Personas for music creation, PromptQL for natural language querying over data, and Agent S for desktop task automation. Humor was shared about Python environment upgrades.
State of AI 2024
llama-3-2 bitnet cerebras daily pipecat meta-ai-fair anthropic multimodality synthetic-data protein-structure-prediction neural-networks statistical-mechanics conversational-ai voice-ai hackathon ipo model-release geoffrey-hinton john-hopfield demis-hassabis john-jumper david-baker
Nathan Benaich's State of AI Report in its 7th year provides a comprehensive overview of AI research and industry trends, including highlights like BitNet and the synthetic data debate. Cerebras is preparing for an IPO, reflecting growth in AI compute. A hackathon hosted by Daily and the Pipecat community focuses on conversational voice AI and multimodal experiences with $20,000 in prizes. Nobel Prizes in Physics and Chemistry were awarded for AI research: Geoffrey Hinton and John Hopfield for neural networks and statistical mechanics, and Demis Hassabis, John Jumper, and David Baker for AlphaFold and protein structure prediction. Meta released Llama 3.2 with multimodal capabilities, accompanied by educational resources and performance updates. "This recognizes the impact of deep neural networks on society" and "tremendous impact of AlphaFold and ML-powered protein structure prediction" were noted by experts.
Liquid Foundation Models: A New Transformers alternative + AINews Pod 2
llama-3-2 gemini-1.5-pro-002 gemini-1.5-flash-002 liquid-ai meta-ai-fair google-deepmind openai reinforcement-learning multimodality model-efficiency foundation-models audio-processing model-deployment open-source ylecun svpino
Liquid.ai emerged from stealth with three subquadratic foundation models demonstrating superior efficiency compared to state space models and Appleโs on-device and server models, backed by a $37M seed round. Meta AI announced Llama 3.2 with multimodal vision-enabled models and lightweight text-only variants for mobile. Google DeepMind introduced production-ready Gemini-1.5-Pro-002 and Gemini-1.5-Flash-002 models with improved pricing and rate limits, alongside AlphaChip, an AI-driven chip design system using reinforcement learning for rapid superhuman layouts. OpenAI enhanced ChatGPT Plus and Teams with Advanced Voice Mode featuring Custom Instructions, Memory, and new nature-inspired voices. California Governor vetoed SB-1047 AI regulation bill, celebrated by AI community figures like ylecun and svpino as a win for open-source AI. Google upgraded NotebookLM with audio overviews supporting YouTube and audio files, turning documents into AI-generated podcasts. "Open source in AI is thriving," noted ylecun, highlighting 1 million models on Github and HuggingFace.
not much happened today
llama-3-2 llama-3 molmo meta-ai-fair google-deepmind hugging-face on-device-ai multimodality chip-design retrieval-augmented-generation rag benchmarking reliability ai-regulation free-speech pytorch-optimization demis-hassabis clementdelangue svpino awnihannun osanseviero omarsar0 sarahookr ylecun
Meta released Llama 3.2, including lightweight 1B and 3B models for on-device AI with capabilities like summarization and retrieval-augmented generation. Molmo, a new multimodal model, was introduced with a large dense captioning dataset. Google DeepMind announced AlphaChip, an AI-driven chip design method improving TPU and CPU designs. Hugging Face surpassed 1 million free public models, highlighting the value of smaller specialized models. Discussions covered challenges in scaling RAG applications, the future of on-device AI running ChatGPT-level models, reliability issues in larger LLMs, and new Elo benchmarking accepted at NeurIPS 2024. AI ethics and regulation topics included free speech responsibilities and California's SB-1047 bill potentially affecting open-source AI. "AlphaChip transformed computer chip design," and "ChatGPT-level AI on mobile devices predicted within a year."
not much happened today
llama-3-2 llama-3 gemma-2 phi-3-5-mini claude-3-haiku gpt-4o-mini molmo gemini-1.5 gemini meta-ai-fair openai allenai google-deepmind multimodality model-optimization benchmarks ai-safety model-distillation pruning adapter-layers open-source-models performance context-windows mira-murati demis-hassabis ylecun sama
Meta AI released Llama 3.2 models including 1B, 3B text-only and 11B, 90B vision variants with 128K token context length and adapter layers for image-text integration. These models outperform competitors like Gemma 2 and Phi 3.5-mini, and are supported on major platforms including AWS, Azure, and Google Cloud. OpenAI CTO Mira Murati announced her departure. Allen AI released Molmo, an open-source multimodal model family outperforming proprietary systems. Google improved Gemini 1.5 with Flash and Pro models. Meta showcased Project Orion AR glasses and hinted at a Quest 3S priced at $300. Discussions covered new benchmarks for multimodal models, model optimization, and AI safety and alignment.
Llama 3.2: On-device 1B/3B, and Multimodal 11B/90B (with AI2 Molmo kicker)
llama-3-2 llama-3-1 claude-3-haiku gpt-4o-mini molmo-72b molmo-7b gemma-2 phi-3-5 llama-3-2-vision llama-3-2-3b llama-3-2-20b meta-ai-fair ai2 qualcomm mediatek arm ollama together-ai fireworks-ai weights-biases cohere weaviate multimodality vision context-windows quantization model-release tokenization model-performance model-optimization rag model-training instruction-following mira-murati daniel-han
Meta released Llama 3.2 with new multimodal versions including 3B and 20B vision adapters on a frozen Llama 3.1, showing competitive performance against Claude Haiku and GPT-4o-mini. AI2 launched multimodal Molmo 72B and 7B models outperforming Llama 3.2 in vision tasks. Meta also introduced new 128k-context 1B and 3B models competing with Gemma 2 and Phi 3.5, with collaborations hinted with Qualcomm, Mediatek, and Arm for on-device AI. The release includes a 9 trillion token count for Llama 1B and 3B. Partner launches include Ollama, Together AI offering free 11B model access, and Fireworks AI. Additionally, a new RAG++ course from Weights & Biases, Cohere, and Weaviate offers systematic evaluation and deployment guidance for retrieval-augmented generation systems based on extensive production experience.