All tags
Topic: "model-size"
not much happened today
gpt-4.5 gpt-4 gpt-4o o1 claude-3.5-sonnet claude-3.7 claude-3-opus deepseek-v3 grok-3 openai anthropic perplexity-ai deepseek scaling01 model-performance humor emotional-intelligence model-comparison pricing context-windows model-size user-experience andrej-karpathy jeremyphoward abacaj stevenheidel yuchenj_uw aravsrinivas dylan522p random_walker
GPT-4.5 sparked mixed reactions on Twitter, with @karpathy noting users preferred GPT-4 in a poll despite his personal favor for GPT-4.5's creativity and humor. Critics like @abacaj highlighted GPT-4.5's slowness and questioned its practical value and pricing compared to other models. Performance-wise, GPT-4.5 ranks above GPT-4o but below o1 and Claude 3.5 Sonnet, with Claude 3.7 outperforming it on many tasks yet GPT-4.5 praised for its humor and "vibes." Speculation about GPT-4.5's size suggests around 5 trillion parameters. Discussions also touched on pricing disparities, with Perplexity Deep Research at $20/month versus ChatGPT at $200/month. The emotional intelligence and humor of models like Claude 3.7 were also noted.
Anime pfp anon eclipses $10k A::B prompting challenge
command-r-plus-104b stable-diffusion-1.5 openai ollama huggingface quantization model-optimization streaming prompt-engineering self-prompting image-composition character-lora-training model-size open-source-licenses memes humor victor-taelin futuristfrog
Victor Taelin issued a $10k challenge to GPT models, initially achieving only 10% success with state-of-the-art models, but community efforts surpassed 90% success within 48 hours, highlighting GPT capabilities and common skill gaps. In Reddit AI communities, Command R Plus (104B) is running quantized on M2 Max hardware via Ollama and llama.cpp forks, with GGUF quantizations released on Huggingface. Streaming text-to-video generation is now available through the st2v GitHub repo. WD Tagger v3 was released for mass auto-captioning datasets with a WebUI. Lesser-known prompting techniques like self-tagging and generational frameworks produced thought-provoking outputs in OpenAI discussions, including experiments with self-evolving system prompts. Stable Diffusion users discussed image composition importance for training character LoRAs and best checkpoints for video game character generation. Discussions also covered scarcity of 5B parameter models and open(ish) licenses for open source AI. Memes included jokes about ChatGPT and Gemini training data differences.