All tags
Topic: "multi-gpu-support"
not much happened today
llama-3-2-vision gpt-2 meta-ai-fair ollama amd llamaindex gemini gitpod togethercompute langchainai weights-biases stanfordnlp deeplearningai model-scaling neural-networks multi-gpu-support skip-connections transformers healthcare-ai automated-recruitment zero-trust-security small-language-models numerical-processing chain-of-thought optical-character-recognition multi-agent-systems agent-memory interactive-language-learning bindureddy fstichler stasbekman jxmnop bindureddy omarsar0 giffmana rajammanabrolu
This week in AI news highlights Ollama 0.4 supporting Meta's Llama 3.2 Vision models (11B and 90B), with applications like handwriting recognition. Self-Consistency Preference Optimization (ScPO) was introduced to improve model consistency without human labels. Discussions on model scaling, neural networks resurgence, and AMD's multi-GPU bandwidth challenges were noted. The importance of skip connections in Transformers was emphasized. In healthcare, less regulation plus AI could revolutionize disease treatment and aging. Tools like LlamaParse and Gemini aid automated resume insights. Gitpod Flex demonstrated zero-trust architecture for secure development environments. Research includes surveys on Small Language Models (SLMs), number understanding in LLMs, and DTrOCR using a GPT-2 decoder for OCR. Multi-agent systems in prediction markets were discussed by TogetherCompute and LangChainAI. Community events include NeurIPS Happy Hour, NLP seminars, and courses on Agent Memory with LLMs as operating systems.
GPT4o August + 100% Structured Outputs for All (GPT4o mini edition)
gpt-4o-mini gpt-4o-2024-08-06 llama-3 bigllama-3.1-1t-instruct meta-llama-3-120b-instruct gemma-2-2b stability-ai unsloth-ai google hugging-face lora controlnet line-art gpu-performance multi-gpu-support fine-tuning prompt-formatting cloud-computing text-to-image-generation model-integration
Stability.ai users are leveraging LoRA and ControlNet for enhanced line art and artistic style transformations, while facing challenges with AMD GPUs due to the discontinuation of ZLUDA. Community tensions persist around the r/stablediffusion subreddit moderation. Unsloth AI users report fine-tuning difficulties with LLaMA3 models, especially with PPO trainer integration and prompt formatting, alongside anticipation for multi-GPU support and cost-effective cloud computing on RunPod. Google released the lightweight Gemma 2 2B model optimized for on-device use with 2.6B parameters, featuring safety and sparse autoencoder tools, and announced Diffusers integration for efficient text-to-image generation on limited resources.
Gemini Ultra is out, to mixed reviews
gemini-ultra gemini-advanced solar-10.7b openhermes-2.5-mistral-7b subformer billm google openai mistral-ai hugging-face multi-gpu-support training-data-contamination model-merging model-alignment listwise-preference-optimization high-performance-computing parameter-sharing post-training-quantization dataset-viewer gpu-scheduling fine-tuning vram-optimization
Google released Gemini Ultra as a paid tier for "Gemini Advanced with Ultra 1.0" following the discontinuation of Bard. Reviews noted it is "slightly faster/better than ChatGPT" but with reasoning gaps. The Steam Deck was highlighted as a surprising AI workstation capable of running models like Solar 10.7B. Discussions in AI communities covered topics such as multi-GPU support for OSS Unsloth, training data contamination from OpenAI outputs, ethical concerns over model merging, and new alignment techniques like Listwise Preference Optimization (LiPO). The Mojo programming language was praised for high-performance computing. In research, the Subformer model uses sandwich-style parameter sharing and SAFE for efficiency, and BiLLM introduced 1-bit post-training quantization to reduce resource use. The OpenHermes dataset viewer tool was launched, and GPU scheduling with Slurm was discussed. Fine-tuning challenges for models like OpenHermes-2.5-Mistral-7B and VRAM requirements were also topics of interest.
GPT4Turbo A/B Test: gpt-4-0125-preview
gpt-4-turbo gpt-4-1106-preview gpt-3.5 llama-2-7b-chat tiny-llama mistral openai thebloke nous-research hugging-face multi-gpu-support model-optimization model-merging fine-tuning context-windows chatbot-personas api-performance text-transcription cost-considerations model-troubleshooting
OpenAI released a new GPT-4 Turbo version in January 2024, prompting natural experiments in summarization and discussions on API performance and cost trade-offs. The TheBloke Discord highlighted UnSloth's upcoming limited multi-GPU support for Google Colab beginners, AI models like Tiny Llama and Mistral running on Nintendo Switch, and advanced model merging techniques such as DARE and SLERP. The OpenAI Discord noted issues with GPT-4-1106-preview processing delays, troubleshooting GPT model errors, and transcription challenges with GPT-3.5 and GPT-4 Turbo. Nous Research AI focused on extending context windows, notably LLaMA-2-7B-Chat reaching 16,384 tokens, and fine-tuning alternatives like SelfExtend. Discussions also touched on chatbot persona creation, model configuration optimizations, and societal impacts of AI technology.
1/4/2024: Jeff Bezos backs Perplexity's $520m Series B.
wizardcoder-33b-v1.1 mobilellama-1.4b-base shearedllama tinyllama mixtral-8x7b perplexity anthropic google nous-research mistral-ai hugging-face document-recall rnn-memory synthetic-data benchmarking multi-gpu-support context-length model-architecture sliding-window-attention model-parallelism gpu-optimization jeff-bezos
Perplexity announced their Series B funding round with notable investor Jeff Bezos, who previously invested in Google 25 years ago. Anthropic is raising $750 million, projecting at least $850 million in annualized revenue next year and implementing "brutal" changes to their Terms of Service. Discussions in Nous Research AI Discord cover topics such as document recall limits from gigabytes of data, RNN memory and compute trade-offs, synthetic datasets, and benchmarking of models like WizardCoder-33B-V1.1, MobileLLaMA-1.4B-Base, ShearedLLaMA, and TinyLLaMA. Other highlights include UnsLOTH optimizations for multi-GPU systems, AI rap voice models, context-extending code, and architectural innovations like applying Detectron/ViT backbones to LLMs, sliding window attention in Mistral, and parallelizing Mixtral 8x7b with FSDP and HF Accelerate.