All tags
Model: "nous-hermes-2"
1/16/2024: TIES-Merging
mixtral-8x7b nous-hermes-2 frankendpo-4x7b-bf16 thebloke hugging-face nous-research togethercompute oak-ridge-national-laboratory vast-ai runpod mixture-of-experts random-gate-routing quantization gptq exl2-quants reinforcement-learning-from-human-feedback supercomputing trillion-parameter-models ghost-attention model-fine-tuning reward-models sanjiwatsuki superking__ mrdragonfox _dampf kaltcit rombodawg technotech
TheBloke's Discord community actively discusses Mixture of Experts (MoE) models, focusing on random gate routing layers for training and the challenges of immediate model use. There is a robust debate on quantization methods, comparing GPTQ and EXL2 quants, with EXL2 noted for faster execution on specialized hardware. A new model, Nous Hermes 2, based on Mixtral 8x7B and trained with RLHF, claims benchmark superiority but shows some inconsistencies. The Frontier supercomputer at Oak Ridge National Laboratory is highlighted for training a trillion-parameter LLM with 14TB RAM, sparking discussions on open-sourcing government-funded AI research. Additionally, the application of ghost attention in the academicat model is explored, with mixed reactions from the community. "Random gate layer is good for training but not for immediate use," and "EXL2 might offer faster execution on specialized hardware," are key insights shared.
12/25/2023: Nous Hermes 2 Yi 34B for Christmas
nous-hermes-2 yi-34b nucleusx yayi-2 ferret teknim nous-research apple mixtral deepseek qwen huggingface wenge-technology quantization model-optimization throughput-metrics batch-processing parallel-decoding tensor-parallelization multimodality language-model-pretraining model-benchmarking teknium carsonpoole casper_ai pradeep1148 osanseviero metaldragon01
Teknium released Nous Hermes 2 on Yi 34B, positioning it as a top open model compared to Mixtral, DeepSeek, and Qwen. Apple introduced Ferret, a new open-source multimodal LLM. Discussions in the Nous Research AI Discord focused on AI model optimization and quantization techniques like AWQ, GPTQ, and AutoAWQ, with insights on proprietary optimization and throughput metrics. Additional highlights include the addition of NucleusX Model to transformers, a 30B model with 80 MMLU, and the YAYI 2 language model by Wenge Technology trained on 2.65 trillion tokens. "AutoAWQ outperforms vLLM up to batch size 8" was noted, and proprietary parallel decoding and tensor parallelization across GPUs were discussed for speed improvements.