All tags
Topic: "rag"
small little news items
r7b llama-3-70b minicpm-o-2.6 gpt-4v qwen2.5-math-prm ollama cohere togethercompute openbmb qwen langchain openai rag tool-use-tasks quality-of-life new-engine multimodality improved-reasoning math-capabilities process-reward-models llm-reasoning mathematical-reasoning beta-release task-scheduling ambient-agents email-assistants ai-software-engineering codebase-analysis test-case-generation security-infrastructure llm-scaling-laws power-law plateauing-improvements gans-revival
Ollama enhanced its models by integrating Cohere's R7B, optimized for RAG and tool use tasks, and released Ollama v0.5.5 with quality updates and a new engine. Together AI launched the Llama 3.3 70B multimodal model with improved reasoning and math capabilities, while OpenBMB introduced the MiniCPM-o 2.6, outperforming GPT-4V on visual tasks. Insights into Process Reward Models (PRM) were shared to boost LLM reasoning, alongside Qwen2.5-Math-PRM models excelling in mathematical reasoning. LangChain released a beta for ChatGPT Tasks enabling scheduling of reminders and summaries, and introduced open-source ambient agents for email assistance. OpenAI rolled out Tasks for scheduling actions in ChatGPT for Plus, Pro, and Teams users. AI software engineering is rapidly advancing, predicted to match human capabilities within 18 months. Research on LLM scaling laws highlights power law relationships and plateauing improvements, while GANs are experiencing a revival.
not much happened today
rstar-math o1-preview qwen2.5-plus qwen2.5-coder-32b-instruct phi-4 claude-3.5-sonnet openai anthropic alibaba microsoft cohere langchain weights-biases deepseek rakuten rbc amd johns-hopkins math process-reward-model mcts vision reasoning synthetic-data pretraining rag automation private-deployment multi-step-workflow open-source-dataset text-embeddings image-segmentation chain-of-thought multimodal-reasoning finetuning recursive-self-improvement collaborative-platforms ai-development partnerships cuda triton ai-efficiency ai-assisted-coding reach_vb rasbt akshaykagrawal arankomatsuzaki teortaxestex aidangomez andrewyng
rStar-Math surpasses OpenAI's o1-preview in math reasoning with 90.0% accuracy using a 7B LLM and MCTS with a Process Reward Model. Alibaba launches Qwen Chat featuring Qwen2.5-Plus and Qwen2.5-Coder-32B-Instruct models enhancing vision-language and reasoning. Microsoft releases Phi-4, trained on 40% synthetic data with improved pretraining. Cohere introduces North, a secure AI workspace integrating LLMs, RAG, and automation for private deployments. LangChain showcases a company research agent with multi-step workflows and open-source datasets. Transformers.js demos released for text embeddings and image segmentation in JavaScript. Research highlights include Meta Meta-CoT for enhanced chain-of-thought reasoning, DeepSeek V3 with recursive self-improvement, and collaborative AI development platforms. Industry partnerships include Rakuten with LangChain, North with RBC supporting 90,000 employees, and Agent Laboratory collaborating with AMD and Johns Hopkins. Technical discussions emphasize CUDA and Triton for AI efficiency and evolving AI-assisted coding stacks by Andrew Ng.
Gemini (Experimental-1114) retakes #1 LLM rank with 1344 Elo
claude-3-sonnet gpt-4 gemini-1.5 claude-3.5-sonnet anthropic openai langchain meta-ai-fair benchmarking prompt-engineering rag visuotactile-perception ai-governance theoretical-alignment ethical-alignment jailbreak-robustness model-releases alignment richardmcngo andrewyng philschmid
Anthropic released the 3.5 Sonnet benchmark for jailbreak robustness, emphasizing adaptive defenses. OpenAI enhanced GPT-4 with a new RAG technique for contiguous chunk retrieval. LangChain launched Promptim for prompt optimization. Meta AI introduced NeuralFeels with neural fields for visuotactile perception. RichardMCNgo resigned from OpenAI, highlighting concerns on AI governance and theoretical alignment. Discussions emphasized the importance of truthful public information and ethical alignment in AI deployment. The latest Gemini update marks a new #1 LLM amid alignment challenges. The AI community continues to focus on benchmarking, prompt-engineering, and alignment issues.
not much happened this weekend
claude-3.5-sonnet llama-3 llama-3-8b notebookllama min-omni-2 moondream openai anthropic hugging-face mistral-ai google-deepmind langchain deepmind microsoft pattern-recognition reinforcement-learning prompt-optimization text-to-speech model-optimization tensor-parallelism hyperparameters multimodal modal-alignment multimodal-fine-tuning ai-productivity privacy generative-ai rag retrieval-augmentation enterprise-text-to-sql amanda-askell philschmid stasbekman francois-fleuret mervenoyann reach_vb dzhng aravsrinivas sama lateinteraction andrew-y-ng bindureddy jerryjliu0
Moondream, a 1.6b vision language model, secured seed funding, highlighting a trend in moon-themed tiny models alongside Moonshine (27-61m ASR model). Claude 3.5 Sonnet was used for AI Twitter recaps. Discussions included pattern recognition vs. intelligence in LLMs, reinforcement learning for prompt optimization, and NotebookLlama, an open-source NotebookLM variant using LLaMA models for tasks like text-to-speech. Advances in model optimization with async-TP in PyTorch for tensor parallelism and hyperparameter tuning were noted. Mini-Omni 2 demonstrated multimodal capabilities across image, audio, and text for voice conversations with emphasis on modal alignment and multimodal fine-tuning. AI productivity tools like an AI email writer and LlamaCloud-based research assistants were introduced. Emphasis on practical skill development and privacy-conscious AI tool usage with Llama3-8B was highlighted. Generative AI tools such as #AIPythonforBeginners and GenAI Agents with LangGraph were shared. Business insights covered rapid execution in AI product development and emerging AI-related job roles. Challenges in enterprise-grade text-to-SQL and advanced retrieval methods were discussed with tutorials on RAG applications using LangChain and MongoDB.
Contextual Document Embeddings: `cde-small-v1`
llama-3 cde-small-v1 gemini-1.5-flash-8b chatgpt meta-ai-fair openai google-deepmind weights-biases togethercompute contextual-embeddings contextual-batching video-generation synthetic-data model-efficiency training-techniques rag algorithmic-efficiency jack-morris sasha-rush tim-brooks demis-hassabis karina-nguyen
Meta announced a new text-to-video model, Movie Gen, claiming superior adaptation of Llama 3 to video generation compared to OpenAI's Sora Diffusion Transformers, though no release is available yet. Researchers Jack Morris and Sasha Rush introduced the cde-small-v1 model with a novel contextual batching training technique and contextual embeddings, achieving strong performance with only 143M parameters. OpenAI launched Canvas, a collaborative interface for ChatGPT with synthetic data training. Google DeepMind welcomed Tim Brooks to work on video generation and world simulators. Google released Gemini 1.5 Flash-8B, improving cost and rate limits with algorithmic efficiency.
not much happened today
llama-3-2 llama-3 molmo meta-ai-fair google-deepmind hugging-face on-device-ai multimodality chip-design retrieval-augmented-generation rag benchmarking reliability ai-regulation free-speech pytorch-optimization demis-hassabis clementdelangue svpino awnihannun osanseviero omarsar0 sarahookr ylecun
Meta released Llama 3.2, including lightweight 1B and 3B models for on-device AI with capabilities like summarization and retrieval-augmented generation. Molmo, a new multimodal model, was introduced with a large dense captioning dataset. Google DeepMind announced AlphaChip, an AI-driven chip design method improving TPU and CPU designs. Hugging Face surpassed 1 million free public models, highlighting the value of smaller specialized models. Discussions covered challenges in scaling RAG applications, the future of on-device AI running ChatGPT-level models, reliability issues in larger LLMs, and new Elo benchmarking accepted at NeurIPS 2024. AI ethics and regulation topics included free speech responsibilities and California's SB-1047 bill potentially affecting open-source AI. "AlphaChip transformed computer chip design," and "ChatGPT-level AI on mobile devices predicted within a year."
Llama 3.2: On-device 1B/3B, and Multimodal 11B/90B (with AI2 Molmo kicker)
llama-3-2 llama-3-1 claude-3-haiku gpt-4o-mini molmo-72b molmo-7b gemma-2 phi-3-5 llama-3-2-vision llama-3-2-3b llama-3-2-20b meta-ai-fair ai2 qualcomm mediatek arm ollama together-ai fireworks-ai weights-biases cohere weaviate multimodality vision context-windows quantization model-release tokenization model-performance model-optimization rag model-training instruction-following mira-murati daniel-han
Meta released Llama 3.2 with new multimodal versions including 3B and 20B vision adapters on a frozen Llama 3.1, showing competitive performance against Claude Haiku and GPT-4o-mini. AI2 launched multimodal Molmo 72B and 7B models outperforming Llama 3.2 in vision tasks. Meta also introduced new 128k-context 1B and 3B models competing with Gemma 2 and Phi 3.5, with collaborations hinted with Qualcomm, Mediatek, and Arm for on-device AI. The release includes a 9 trillion token count for Llama 1B and 3B. Partner launches include Ollama, Together AI offering free 11B model access, and Fireworks AI. Additionally, a new RAG++ course from Weights & Biases, Cohere, and Weaviate offers systematic evaluation and deployment guidance for retrieval-augmented generation systems based on extensive production experience.
Learnings from o1 AMA
o1-preview o1-mini claude-3.5-sonnet gpt-4o openai weights-biases cohere weaviate reinforcement-learning chain-of-thought reasoning model-performance prompting code-editing rag hybrid-search sama rohanpaul_ai gdb andrew-mayne
OpenAI released the o1 model series, touted as their "most capable and aligned models yet," trained with reinforcement learning to enhance reasoning. The o1-preview model scored 21% on ARC-AGI, ~80% on aider code editing (surpassing Claude 3.5 Sonnet's 77%), and ~52% on Cognition-Golden, showcasing a shift from memorizing answers to memorizing reasoning. The model employs a unique chain-of-thought approach enabling "System II thinking" for better problem-solving. Experts like Andrew Mayne advise framing o1 as a smart friend providing thoughtful explanations. Additionally, an advanced RAG course sponsored by Weights & Biases, Cohere, and Weaviate offers strategies for hybrid search and prompting to optimize AI solutions.
ALL of AI Engineering in One Place
claude-3-sonnet claude-3 openai google-deepmind anthropic mistral-ai cohere hugging-face adept midjourney character-ai microsoft amazon nvidia salesforce mastercard palo-alto-networks axa novartis discord twilio tinder khan-academy sourcegraph mongodb neo4j hasura modular cognition anysphere perplexity-ai groq mozilla nous-research galileo unsloth langchain llamaindex instructor weights-biases lambda-labs neptune datastax crusoe covalent qdrant baseten e2b octo-ai gradient-ai lancedb log10 deepgram outlines crew-ai factory-ai interpretability feature-steering safety multilinguality multimodality rag evals-ops open-models code-generation gpus agents ai-leadership
The upcoming AI Engineer World's Fair in San Francisco from June 25-27 will feature a significantly expanded format with booths, talks, and workshops from top model labs like OpenAI, DeepMind, Anthropic, Mistral, Cohere, HuggingFace, and Character.ai. It includes participation from Microsoft Azure, Amazon AWS, Google Vertex, and major companies such as Nvidia, Salesforce, Mastercard, Palo Alto Networks, and more. The event covers 9 tracks including RAG, multimodality, evals/ops, open models, code generation, GPUs, agents, AI in Fortune 500, and a new AI leadership track. Additionally, Anthropic shared interpretability research on Claude 3 Sonnet, revealing millions of interpretable features that can be steered to modify model behavior, including safety-relevant features related to bias and unsafe content, though more research is needed for practical applications. The event offers a discount code for AI News readers.
Quis promptum ipso promptiet?
llama-3-70b llama-3-120b llama-3 llama-cpp anthropic openai zoominfo neuralink prompt-engineering chain-of-thought rag quantization cuda-graphs gpu-optimization thought-controlled-devices modeling-consciousness conference sama gdb bindureddy svpino rohanpaul_ai alexalbert__ abacaj
Anthropic released upgrades to their Workbench Console, introducing new prompt engineering features like chain-of-thought reasoning and prompt generators that significantly reduce development time, exemplified by their customer Zoominfo. OpenAI teased a "magic" new development coming soon, speculated to be a new LLM replacing GPT-3.5 in the free tier or a search competitor. The open-source community highlighted Llama 3 70B as "game changing" with new quantized weights for Llama 3 120B and CUDA graph support for llama.cpp improving GPU performance. Neuralink demonstrated a thought-controlled mouse, sparking interest in modeling consciousness from brain signals. The ICLR 2024 conference is being held in Asia for the first time, generating excitement.
Cohere Command R+, Anthropic Claude Tool Use, OpenAI Finetuning
c4ai-command-r-plus claude-3 gpt-3.5-turbo gemini mistral-7b gemma-2 claude-3-5 llama-3 vicuna cohere anthropic openai microsoft stability-ai opera-software meta-ai-fair google-deepmind mistral-ai tool-use multilingual-models rag fine-tuning quantum-computing audio-generation local-inference context-windows model-size-analysis model-comparison
Cohere launched Command R+, a 104B dense model with 128k context length focusing on RAG, tool-use, and multilingual capabilities across 10 key languages. It supports Multi-Step Tool use and offers open weights for research. Anthropic introduced tool use in beta for Claude, supporting over 250 tools with new cookbooks for practical applications. OpenAI enhanced its fine-tuning API with new upgrades and case studies from Indeed, SK Telecom, and Harvey, promoting DIY fine-tuning and custom model training. Microsoft achieved a quantum computing breakthrough with an 800x error rate improvement and the most usable qubits to date. Stability AI released Stable Audio 2.0, improving audio generation quality and control. The Opera browser added local inference support for large language models like Meta's Llama, Google's Gemma, and Vicuna. Discussions on Reddit highlighted Gemini's large context window, analysis of GPT-3.5-Turbo model size, and a battle simulation between Claude 3 and ChatGPT using local 7B models like Mistral and Gemma.
Not much happened today
jamba-v0.1 command-r gpt-3.5-turbo openchat-3.5-0106 mixtral-8x7b mistral-7b midnight-miqu-70b-v1.0.q5_k_s cohere lightblue openai mistral-ai nvidia amd hugging-face ollama rag mixture-of-experts model-architecture model-analysis debate-persuasion hardware-performance gpu-inference cpu-comparison local-llm stable-diffusion ai-art-bias
RAGFlow open sourced, a deep document understanding RAG engine with 16.3k context length and natural language instruction support. Jamba v0.1, a 52B parameter MoE model by Lightblue, released but with mixed user feedback. Command-R from Cohere available on Ollama library. Analysis of GPT-3.5-Turbo architecture reveals about 7 billion parameters and embedding size of 4096, comparable to OpenChat-3.5-0106 and Mixtral-8x7B. AI chatbots, including GPT-4, outperform humans in debates on persuasion. Mistral-7B made amusing mistakes on a math riddle. Hardware highlights include a discounted HGX H100 640GB machine with 8 H100 GPUs bought for $58k, and CPU comparisons between Epyc 9374F and Threadripper 1950X for LLM inference. GPU recommendations for local LLMs focus on VRAM and inference speed, with users testing 4090 GPU and Midnight-miqu-70b-v1.0.q5_k_s model. Stable Diffusion influences gaming habits and AI art evaluation shows bias favoring human-labeled art.
Welcome /r/LocalLlama!
cerebrum-8x7b mixtral-7b gpt-3.5-turbo gemini-pro moistral-11b-v1 claude-opus qwen-vl-chat sakana openinterpreter reddit aether-research mistral-ai nvidia lmdeploy model-merging benchmarking quantization performance-optimization deployment vision fine-tuning training-data synthetic-data rag gui
Sakana released a paper on evolutionary model merging. OpenInterpreter launched their O1 devkit. Discussions highlight Claude Haiku's underrated performance with 10-shot examples. On Reddit's IPO, AINews introduces Reddit summaries starting with /r/LocalLlama, covering upcoming subreddits like r/machinelearning and r/openai. Aether Research released Cerebrum 8x7b based on Mixtral, matching GPT-3.5 Turbo and Gemini Pro on reasoning tasks, setting a new open-source reasoning SOTA. Moistral 11B v1 finetuned model from Cream-Phi-2 creators was released. A creative writing benchmark uses Claude Opus as judge. Hobbyists explore 1.58 BitNet ternary quantization and 1-bit LLMs training. Nvidia's Blackwell (h200) chip supports FP4 precision quantization. LMDeploy v0.2.6+ enables efficient vision-language model deployment with models like Qwen-VL-Chat. Users seek GUIs for LLM APIs with plugin and RAG support. Pipelines for synthetic training data generation and fine-tuning language models for chat are discussed.
AI gets Memory
miqumaid-v2-70b mixtral-8x7b-qlora mistral-7b phi-2 medalpaca aya openai langchain thebloke cohere unsloth-ai mistral-ai microsoft rag memory-modeling context-windows open-source finetuning sequential-fine-tuning direct-preference-optimization rlhf ppo javascript-python-integration hardware-optimization gpu-overclocking quantization model-training large-context multilinguality joanne-jang
AI Discords analysis covered 20 guilds, 312 channels, and 6901 messages. The report highlights the divergence of RAG style operations for context and memory, with implementations like MemGPT rolling out in ChatGPT and LangChain. The TheBloke Discord discussed open-source large language models such as the Large World Model with contexts up to 1 million tokens, and the Cohere aya model supporting 101 languages. Roleplay-focused models like MiquMaid-v2-70B were noted for performance improvements with enhanced hardware. Finetuning techniques like Sequential Fine-Tuning (SFT) and Direct Preference Optimization (DPO) were explained, with tools like Unsloth AI's apply_chat_template preferred over Alpaca. Integration of JavaScript and Python via JSPyBridge in the SillyTavern project was also discussed. Training challenges with Mixtral 8x7b qlora versus Mistral 7b were noted. The LM Studio Discord focused on hardware limitations affecting large model loading, medical LLMs like medAlpaca, and hardware discussions around GPU upgrades and overclocking. Anticipation for IQ3_XSS 1.5 bit quantization support in LM Studio was expressed.
1/11/2024: Mixing Experts vs Merging Models
gpt-4-turbo gpt-4-0613 mixtral deepseekmoe phixtral deepseek-ai hugging-face nous-research teenage-engineering discord mixture-of-experts model-merging fine-tuning rag security discord-tos model-performance prompt-engineering function-calling semantic-analysis data-frameworks ash_prabaker shacrw teknium 0xevil everyoneisgross ldj pramod8481 mgreg_42266 georgejrjrjr kenakafrosty
18 guilds, 277 channels, and 1342 messages were analyzed with an estimated reading time saved of 187 minutes. The community switched to GPT-4 turbo and discussed the rise of Mixture of Experts (MoE) models like Mixtral, DeepSeekMOE, and Phixtral. Model merging techniques, including naive linear interpolation and "frankenmerges" by SOLAR and Goliath, are driving new performance gains on open leaderboards. Discussions in the Nous Research AI Discord covered topics such as AI playgrounds supporting prompt and RAG parameters, security concerns about third-party cloud usage, debates on Discord bots and TOS, skepticism about Teenage Engineering's cloud LLM, and performance differences between GPT-4 0613 and GPT-4 turbo. The community also explored fine-tuning strategies involving DPO, LoRA, and safetensors, integration of RAG with API calls, semantic differences between MoE and dense LLMs, and data frameworks like llama index and SciPhi-AI's synthesizer. Issues with anomalous characters in fine-tuning were also raised.