All tags
Model: "rwkv-v5"
CodeLLama 70B beats GPT4 on HumanEval
codellama miqu mistral-medium llama-2-70b aphrodite-engine mixtral flatdolphinmaid noromaid rpcal chatml mistral-7b activation-beacon eagle-7b rwkv-v5 openhermes2.5 nous-hermes-2-mixtral-8x7b-dpo imp-v1-3b bakllava moondream qwen-vl meta-ai-fair ollama nous-research mistral-ai hugging-face ai-ethics alignment gpu-optimization direct-prompt-optimization fine-tuning cuda-programming optimizer-technology quantization multimodality context-length dense-retrieval retrieval-augmented-generation multilinguality model-performance open-source code-generation classification vision
Meta AI surprised the community with the release of CodeLlama, an open-source model now available on platforms like Ollama and MLX for local use. The Miqu model sparked debate over its origins, possibly linked to Mistral Medium or a fine-tuned Llama-2-70b, alongside discussions on AI ethics and alignment risks. The Aphrodite engine showed strong performance on A6000 GPUs with specific configurations. Role-playing AI models such as Mixtral and Flatdolphinmaid faced challenges with repetitiveness, while Noromaid and Rpcal performed better, with ChatML and DPO recommended for improved responses. Learning resources like fast.ai's course were highlighted for ML/DL beginners, and fine-tuning techniques with optimizers like Paged 8bit lion and adafactor were discussed.
At Nous Research AI, the Activation Beacon project introduced a method for unlimited context length in LLMs using "global state" tokens, potentially transforming retrieval-augmented models. The Eagle-7B model, based on RWKV-v5, outperformed Mistral in benchmarks with efficiency and multilingual capabilities. OpenHermes2.5 was recommended for consumer hardware due to its quantization methods. Multimodal and domain-specific models like IMP v1-3b, Bakllava, Moondream, and Qwen-vl were explored for classification and vision-language tasks. The community emphasized centralizing AI resources for collaborative research.
RWKV "Eagle" v5: Your move, Mamba
rwkv-v5 mistral-7b miqu-1-70b mistral-medium llama-2 mistral-instruct-v0.2 mistral-tuna llama-2-13b kunoichi-dpo-v2-7b gpt-4 eleutherai mistral-ai hugging-face llamaindex nous-research rwkv lmsys fine-tuning multilinguality rotary-position-embedding model-optimization model-performance quantization speed-optimization prompt-engineering model-benchmarking reinforcement-learning andrej-karpathy
RWKV v5 Eagle was released with better-than-mistral-7b evaluation results, trading some English performance for multilingual capabilities. The mysterious miqu-1-70b model sparked debate about its origins, possibly a leak or distillation of Mistral Medium or a fine-tuned Llama 2. Discussions highlighted fine-tuning techniques, including the effectiveness of 1,000 high-quality prompts over larger mixed-quality datasets, and tools like Deepspeed, Axolotl, and QLoRA. The Nous Research AI community emphasized the impact of Rotary Position Embedding (RoPE) theta settings on LLM extrapolation, improving models like Mistral Instruct v0.2. Speed improvements in Mistral Tuna kernels reduced token processing costs, enhancing efficiency. The launch of Eagle 7B with 7.52B parameters showcased strong multilingual performance, surpassing other 7B class models.