All tags
Topic: "token-limits"
GPT4Turbo A/B Test: gpt-4-1106-preview
gpt-4-turbo gpt-4 gpt-3.5 openhermes-2.5-mistral-7b-4.0bpw exllamav2 llama-2-7b-chat mistral-instruct-v0.2 mistrallite llama2 openai huggingface thebloke nous-research mistral-ai langchain microsoft azure model-loading rhel dataset-generation llm-on-consoles fine-tuning speed-optimization api-performance prompt-engineering token-limits memory-constraints text-generation nlp-tools context-window-extension sliding-windows rope-theta non-finetuning-context-extension societal-impact
OpenAI released a new GPT-4 Turbo version, prompting a natural experiment in summarization comparing the November 2023 and January 2024 versions. The TheBloke Discord discussed troubleshooting model loading errors with OpenHermes-2.5-Mistral-7B-4.0bpw and exllamav2, debates on RHEL in ML, dataset generation for understanding GPT flaws, and running LLMs like Llama and Mistral on consoles. LangChain fine-tuning challenges for Llama2 were also noted. The OpenAI Discord highlighted GPT-4 speed inconsistencies, API vs web performance, prompt engineering with GPT-3.5 and GPT-4 Turbo, and DALL-E typo issues in image text. Discussions included NLP tools like semantic-text-splitter and collaboration concerns with GPT-4 Vision on Azure. The Nous Research AI Discord focused on extending context windows with Mistral instruct v0.2, MistralLite, and LLaMA-2-7B-Chat achieving 16,384 token context, plus alternatives like SelfExtend for context extension without fine-tuning. The societal impact of AI technology was also considered.
1/6-7/2024: LlaMA Pro - an alternative to PEFT/RAG??
llama-3 llama-3-1-1b llama-3-8-3b gpt-4 gpt-3.5 dall-e openai mistral-ai llamaindex langchain fine-tuning model-expansion token-limits privacy multilinguality image-generation security custom-models model-training yannic-kilcher
New research papers introduce promising Llama Extensions including TinyLlama, a compact 1.1B parameter model pretrained on about 1 trillion tokens for 3 epochs, and LLaMA Pro, an 8.3B parameter model expanding LLaMA2-7B with additional training on 80 billion tokens of code and math data. LLaMA Pro adds layers to avoid catastrophic forgetting and balances language and code tasks but faces scrutiny for not using newer models like Mistral or Qwen. Meanwhile, OpenAI Discord discussions reveal insights on GPT-4 token limits, privacy reassurances, fine-tuning for GPT-3.5, challenges with multi-language image recognition, custom GPT creation requiring ChatGPT Plus, and security concerns in GPT deployment. Users also share tips on dynamic image generation with DALL-E and logo creation.