All tags
Person: "tom-doerr"
not much happened today
phi-4 reinforce++ arc-agi-2 ai21-labs ollama langchain togethercompute groq reinforcement-learning ppo model-optimization memory-efficiency python-packages vision text-extraction frontend-code-generation workflow-automation coding-agents compute-cost-reduction ethical-ai agi-benchmarks scam-alerts sebastien-bubeck fchollet tom-doerr arohan_ bindureddy hwchase17 jonathanross321 clementdelangue vikhyatk
Sebastien Bubeck introduced REINFORCE++, enhancing classical REINFORCE with PPO-inspired techniques for 30% faster training. AI21 Labs released Phi-4 under the MIT License, accessible via Ollama. François Chollet announced plans for ARC-AGI-2 and a next-generation AGI benchmark. LangChain launched 10 new integration packages to boost LLM application development. Tom Doerr introduced Ollama-OCR, a Python package for text extraction using vision language models. Arohan optimized Shampoo for memory efficiency, reducing usage from 20 to 6 bytes per parameter. Bindu Reddy showcased CodeLLM's v1 for frontend code generation and highlighted LlamaIndex Workflows for academic summarization and slide generation. Hwchase17 collaborated with Together Compute to enhance WebDev Arena with complex coding agents for LLM coding evaluations. Jonathan Ross detailed Groq's mission to reduce compute costs by 1000x amid rising generative AI spending. Clement Delangue warned about scam alerts involving false claims of association with AI21. Vikhyat K raised concerns about the ethical implications and trade-offs of AGI. Memes and humor included creative AI prompts and critiques of LLM behaviors.
not much happened today
prime gpt-4o qwen-32b olmo openai qwen cerebras-systems langchain vercel swaggo gin echo reasoning chain-of-thought math coding optimization performance image-processing software-development agent-frameworks version-control security robotics hardware-optimization medical-ai financial-ai architecture akhaliq jason-wei vikhyatk awnihannun arohan tom-doerr hendrikbgr jerryjliu0 adcock-brett shuchaobi stasbekman reach-vb virattt andrew-n-carr
Olmo 2 released a detailed tech report showcasing full pre, mid, and post-training details for a frontier fully open model. PRIME, an open-source reasoning solution, achieved 26.7% pass@1, surpassing GPT-4o in benchmarks. Performance improvements include Qwen 32B (4-bit) generating at >40 tokens/sec on an M4 Max and libvips being 25x faster than Pillow for image resizing. New tools like Swaggo/swag for Swagger 2.0 documentation, Jujutsu (jj) Git-compatible VCS, and Portspoof security tool were introduced. Robotics advances include a weapon detection system with a meters-wide field of view and faster frame rates. Hardware benchmarks compared H100 and MI300x accelerators. Applications span medical error detection using PRIME and a financial AI agent integrating LangChainAI and Vercel AI SDK. Architectural insights suggest the need for breakthroughs similar to SSMs or RNNs.
Common Corpus: 2T Open Tokens with Provenance
qwen-2.5-coder claude-3.5-sonnet janusflow-1.3b ocronos-vintage pleais huggingface langchainai deepseek alibaba anthropic provenance ocr multilingual-datasets prompt-engineering multimodality image-generation code-generation quantization model-scaling inference-efficiency tim-dettmers tom-doerr omarsar0 swyx madiator reach_vb
Pleais via Huggingface released Common Corpus, the largest fully open multilingual dataset with over 2 trillion tokens including detailed provenance information. They also introduced OCRonos-Vintage, a 124M-parameter OCR correction model that efficiently fixes digitization errors on CPU and GPU, unlocking knowledge from PDFs. On AI tools, LangChainAI launched Prompt Canvas for collaborative prompt engineering, while DeepSeek released JanusFlow 1.3B, a unified multimodal LLM integrating autoregressive and rectified flow models for enhanced image understanding and generation. Alibaba Cloud announced Qwen2.5-Coder, a code-focused LLM with advanced coding capabilities, and Claude 3.5 Sonnet was highlighted for superior code generation. Discussions on quantization challenges and scaling laws for precision by Tim Dettmers and others emphasized the impact of low-precision training on model scalability and inference efficiency. "Scaling Laws for Precision" paper insights and alternative efficiency methods were also noted.