All tags
Topic: "hallucination-detection"
not much happened today
deepseek-r1-0528 o3 gemini-2.5-pro claude-opus-4 deepseek_ai openai gemini meta-ai-fair anthropic x-ai ollama hugging-face alibaba bytedance xiaomi reasoning reinforcement-learning benchmarking quantization local-inference model-evaluation open-weights transparency post-training agentic-benchmarks long-context hallucination-detection teortaxestex wenfeng danielhanchen awnihannun reach_vb abacaj
DeepSeek R1-0528 release brings major improvements in reasoning, hallucination reduction, JSON output, and function calling, matching or surpassing closed models like OpenAI o3 and Gemini 2.5 Pro on benchmarks such as Artificial Analysis Intelligence Index, LiveBench, and GPQA Diamond. The model ranks #2 globally in open weights intelligence, surpassing Meta AI, Anthropic, and xAI. Open weights and technical transparency have fueled rapid adoption across platforms like Ollama and Hugging Face. Chinese AI labs including DeepSeek, Alibaba, ByteDance, and Xiaomi now match or surpass US labs in model releases and intelligence, driven by open weights strategies. Reinforcement learning post-training is critical for intelligence gains, mirroring trends seen at OpenAI. Optimized quantization techniques (1-bit, 4-bit) and local inference enable efficient experimentation on consumer hardware. New benchmarks like LisanBench test knowledge, planning, memory, and long-context reasoning, with OpenAI o3 and Claude Opus 4 leading. Discussions highlight concerns about benchmark contamination and overemphasis on RL-tuned gains.
not much happened today
flux-schnell meta-ai-fair anthropic togethercompute hugging-face audio-generation quantization prompt-caching long-term-memory llm-serving-framework hallucination-detection ai-safety ai-governance geoffrey-hinton john-hopfield demis-hassabis rohanpaul_ai svpino hwchase17 shreyar philschmid mmitchell_ai bindureddy
Geoffrey Hinton and John Hopfield won the Nobel Prize in Physics for foundational work on neural networks linking AI and physics. Meta AI introduced a 13B parameter audio generation model as part of Meta Movie Gen for video-synced audio. Anthropic launched the Message Batches API enabling asynchronous processing of up to 10,000 queries at half the cost. Together Compute released Flux Schnell, a free model for 3 months. New techniques like PrefixQuant quantization and Prompt Caching for low-latency inference were highlighted by rohanpaul_ai. LangGraph added long-term memory support for persistent document storage. Hex-LLM framework was introduced for TPU-based low-cost, high-throughput LLM serving from Hugging Face models. Discussions on AI safety emphasized gender equality in science, and concerns about premature AI regulation by media and Hollywood were raised.
Microsoft AgentInstruct + Orca 3
mistral-7b orca-2.5 microsoft-research apple tencent hugging-face synthetic-data fine-tuning instruction-following transformers model-performance hallucination-detection dataset-quality flashattention mixture-of-experts philschmid sama bindureddy rohanpaul_ai zachtratar dair_ai
Microsoft Research released AgentInstruct, the third paper in its Orca series, introducing a generative teaching pipeline that produces 25.8 million synthetic instructions to fine-tune mistral-7b, achieving significant performance gains: +40% AGIEval, +19% MMLU, +54% GSM8K, +38% BBH, +45% AlpacaEval, and a 31.34% reduction in hallucinations. This synthetic data approach follows the success of FineWeb and Apple's Rephrasing research in improving dataset quality. Additionally, Tencent claims to have generated 1 billion diverse personas for synthetic data. On AI Twitter, notable discussions included a shooting incident at a Trump rally and recent ML research highlights such as FlashAttention-3, RankRAG, and Mixture of A Million Experts.
We Solved Hallucinations
gpt-2 flashattention-3 lynx meta-ai-fair nvidia princeton colfax patronus-ai databricks mosaic-ai openai compute-hardware gpu-optimization flashattention llm-evaluation hallucination-detection vision benchmarking synthetic-data model-training karpathy tri_dao giffmana vikhyatk dbrxmosaicai
Reddit's URL structure causes link errors in AI-generated summaries, especially with NSFW content affecting models like Claude and GPT-4. The team fixed this glitch while still leveraging LLMs for summarizing Reddit content. GPT-2 training costs have dramatically dropped to ~$672 using H100 GPUs and software improvements like CUDA and FlashAttention. FlashAttention-3 was released, achieving up to 740 TFLOPS on H100 GPUs, with FP8 nearing 1.2 PFLOPS, developed collaboratively by Meta, NVIDIA, Princeton, and Colfax. Hopper GPUs enable major speedups with new hardware features. Synthetic data may not improve vision tasks, as shown in recent research. The Avocado360 benchmark evaluates vision-language models' ability to detect avocados in images. Lynx, a hallucination detection model for LLMs, was introduced for real-world healthcare and fintech applications, trained by Patronus AI on Databricks Mosaic AI using Composer.
Test-Time Training, MobileLLM, Lilian Weng on Hallucination (Plus: Turbopuffer)
llama-2-7b codegeex4-all-9b mamba facebook-research meta-ai-fair tsinghua-university hallucination-detection anti-hallucination-methods on-device-ai model-architecture rnn long-context-modeling model-scaling expressive-hidden-states code-generation lilian-weng yann-lecun
Lilian Weng released a comprehensive literature review on hallucination detection and anti-hallucination methods including techniques like FactualityPrompt, SelfCheckGPT, and WebGPT. Facebook AI Research (FAIR) published MobileLLM, a sub-billion parameter on-device language model architecture achieving performance comparable to llama-2-7b with innovations like thin and deep models and shared weights. A new RNN-based LLM architecture with expressive hidden states was introduced, replacing attention mechanisms and scaling better than Mamba and Transformer models for long-context modeling. Additionally, Tsinghua University open sourced CodeGeeX4-ALL-9B, a multilingual code generation model excelling in code assistance.
Skyfall
gemini-1.5-pro gemini-1.5-flash yi-1.5 kosmos-2.5 paligemma falcon-2 deepseek-v2 hunyuan-dit gemini-1.5 gemini-1.5-flash yi-1.5 google-deepmind yi-ai microsoft hugging-face langchain maven multimodality mixture-of-experts transformer model-optimization long-context model-performance model-inference fine-tuning local-ai scaling-laws causal-models hallucination-detection model-distillation model-efficiency hamel-husain dan-becker clement-delangue philschmid osanseviero arankomatsuzaki jason-wei rohanpaul_ai
Between 5/17 and 5/20/2024, key AI updates include Google DeepMind's Gemini 1.5 Pro and Flash models, featuring sparse multimodal MoE architecture with up to 10M context and a dense Transformer decoder that is 3x faster and 10x cheaper. Yi AI released Yi-1.5 models with extended context windows of 32K and 16K tokens. Other notable releases include Kosmos 2.5 (Microsoft), PaliGemma (Google), Falcon 2, DeepSeek v2 lite, and HunyuanDiT diffusion model. Research highlights feature an Observational Scaling Laws paper predicting model performance across families, a Layer-Condensed KV Cache technique boosting inference throughput by up to 26×, and the SUPRA method converting LLMs into RNNs for reduced compute costs. Hugging Face expanded local AI capabilities enabling on-device AI without cloud dependency. LangChain updated its v0.2 release with improved documentation. The community also welcomed a new LLM Finetuning Discord by Hamel Husain and Dan Becker for Maven course users. "Hugging Face is profitable, or close to profitable," enabling $10 million in free shared GPUs for developers.
Chameleon: Meta's (unreleased) GPT4o-like Omnimodal Model
chameleon gpt-4o gemini-1.5-flash claude-3 meta-ai-fair openai google-deepmind anthropic reddit multimodality early-fusion benchmarking model-training tokenization streaming tool-use vision coding hallucination-detection model-performance armen-aghajanyan sama alexandr-wang abacaj alexalbert__
Meta AI FAIR introduced Chameleon, a new multimodal model family with 7B and 34B parameter versions trained on 10T tokens of interleaved text and image data enabling "early fusion" multimodality that can natively output any modality. While reasoning benchmarks are modest, its "omnimodality" approach competes well with pre-GPT4o multimodal models. OpenAI launched GPT-4o, a model excelling in benchmarks like MMLU and coding tasks, with strong multimodal capabilities but some regression in ELO scores and hallucination issues. Google DeepMind announced Gemini 1.5 Flash, a small model with 1M context window and flash performance, highlighting convergence trends between OpenAI and Google models. Anthropic updated Claude 3 with streaming support, forced tool use, and vision tool integration for multimodal knowledge extraction. OpenAI also partnered with Reddit, raising industry attention.
DeepSeek-V2 beats Mixtral 8x22B with >160 experts at HALF the cost
deepseek-v2 llama-3-120b llama-3-400b gpt-4 mistral phi claude gemini mai-1 med-gemini deepseek-ai mistral-ai microsoft openai scale-ai tesla nvidia google-deepmind mixture-of-experts multi-head-attention model-inference benchmarking overfitting robotics teleoperation open-source multimodality hallucination-detection fine-tuning medical-ai model-training erhartford maximelabonne bindureddy adcock_brett drjimfan clementdelangue omarsar0 rohanpaul_ai
DeepSeek V2 introduces a new state-of-the-art MoE model with 236B parameters and a novel Multi-Head Latent Attention mechanism, achieving faster inference and surpassing GPT-4 on AlignBench. Llama 3 120B shows strong creative writing skills, while Microsoft is reportedly developing a 500B parameter LLM called MAI-1. Research from Scale AI highlights overfitting issues in models like Mistral and Phi, whereas GPT-4, Claude, Gemini, and Llama maintain benchmark robustness. In robotics, Tesla Optimus advances with superior data collection and teleoperation, LeRobot marks a move toward open-source robotics AI, and Nvidia's DrEureka automates robot skill training. Multimodal LLM hallucinations are surveyed with new mitigation strategies, and Google's Med-Gemini achieves SOTA on medical benchmarks with fine-tuned multimodal models.
Fixing Gemma
gemma claude-3-opus claude-3 mistral-large gpt-4 google unsloth anthropic mistral-ai finetuning numerical-precision benchmarking structured-data-extraction adaptive-equalizer information-theory hallucination-detection model-stability daniel-han yann-lecun francois-chollet arav-srinivas _aidan_clark_
Google's Gemma model was found unstable for finetuning until Daniel Han from Unsloth AI fixed 8 bugs, improving its implementation. Yann LeCun explained technical details of a pseudo-random bit sequence for adaptive equalizers, while François Chollet discussed the low information bandwidth of the human visual system. Arav Srinivas reported that Claude 3 Opus showed no hallucinations in extensive testing, outperforming GPT-4 and Mistral-Large in benchmarks. Reflections from Yann LeCun highlight ongoing AI progress toward human-level intelligence. The community is shifting pipelines to work better with Claude models, and emotional experiences in ML development were shared by Aidan Clark.
12/21/2023: The State of AI (according to LangChain)
mixtral gpt-4 chatgpt bard dall-e langchain openai perplexity-ai microsoft poe model-consistency model-behavior response-quality chatgpt-usage-limitations error-handling user-experience model-comparison hallucination-detection prompt-engineering creative-ai
LangChain launched their first report based on LangSmith stats revealing top charts for mindshare. On OpenAI's Discord, users raised issues about the Mixtral model, noting inconsistencies and comparing it to Poe's Mixtral. There were reports of declining output quality and unpredictable behavior in GPT-4 and ChatGPT, with discussions on differences between Playground GPT-4 and ChatGPT GPT-4. Users also reported anomalous behavior in Bing and Bard AI models, including hallucinations and strange assertions. Various user concerns included message limits on GPT-4, response completion errors, chat lags, voice setting inaccessibility, password reset failures, 2FA issues, and subscription restrictions. Techniques for guiding GPT-4 outputs and creative uses with DALL-E were also discussed. Users highlighted financial constraints affecting subscriptions and queries about earning with ChatGPT and token costs.