All tags
Company: "lm-studio"
The Dissection of Smaug (72B)
smaug-72b qwen-1.0 qwen-1.5 gpt-4 mistral-7b miqumaid wizardlm_evol_instruct_v2_196k openhermes-2.5 abacus-ai hugging-face nous-research laion thebloke lm-studio intel nvidia elevenlabs fine-tuning model-merging quantization web-ui model-conversion hardware-setup privacy image-generation optical-character-recognition prompt-engineering bindureddy
Abacus AI launched Smaug 72B, a large finetune of Qwen 1.0, which remains unchallenged on the Hugging Face Open LLM Leaderboard despite skepticism from Nous Research. LAION introduced a local voice assistant model named Bud-E with a notable demo. The TheBloke Discord community discussed model performance trade-offs between large models like GPT-4 and smaller quantized models, fine-tuning techniques using datasets like WizardLM_evol_instruct_V2_196k and OpenHermes-2.5, and challenges in web UI development and model merging involving Mistral-7b and MiquMaid. The LM Studio Discord highlighted issues with model conversion from PyTorch to gguf, hardware setups involving Intel Xeon CPUs and Nvidia P40 GPUs, privacy concerns, and limitations in image generation and web UI availability.
1/17/2024: Help crowdsource function calling datasets
mistral-7b dolphin-2.7-mixtral-8x7b mega-dolphin dolphin-2.6-mistral-7b-dpo llama-cpp lm-studio mistral-ai microsoft hugging-face apple function-calling quantization model-performance gpu-optimization model-selection closed-source memory-optimization linux-server api-fees headless-mode yagilb heyitsyorkie
LM Studio updated its FAQ clarifying its closed-source status and perpetual freeness for personal use with no data collection. The new beta release includes fixes and hints at upcoming 2-bit quantization support. For gaming, models like Dolphin 2.7 Mixtral 8x7B, MegaDolphin, and Dolphin 2.6 Mistral 7B DPO with Q4_K_M quantization were recommended. Discussions highlighted that single powerful GPUs outperform multi-GPU setups due to bottlenecks, with older GPUs like Tesla P40 being cost-effective. Microsoft's AutoGen Studio was introduced but has issues and requires API fees for open-source models. Linux users are advised to use llama.cpp over LM Studio due to lack of headless mode. Additional tools like LLMFarm for iOS and various Hugging Face repositories were also mentioned. "LM Studio must be running to use the local inference server as there is no headless mode available" and "matching model size to GPU memory is key for performance" were notable points.
12/31/2023: Happy New Year
mistral-7b mixtral lm-studio mistral-ai hugging-face amd fine-tuning hardware-optimization vram emotional-intelligence model-deployment integration gpu-optimization software-updates
LM Studio community discussions highlight variations and optimizations in Dolphin and Mistral 7b models, focusing on hardware-software configurations and GPU vRAM impact on processing speed. Challenges with Mixtral model deployment on local machines and workarounds for downloading models from HuggingFace in restricted regions were addressed. Users explored enhancing AI's emotional intelligence and personalities through extended prompts, referencing research on emotional stimuli in large language models. The community also discussed hardware setups for budget AI compute servers, integration issues with ChromaDB and Autogen, and shared positive feedback on LM Studio's usability and UI. Celebrations for the New Year added a social touch to the guild interactions.
12/10/2023: not much happened today
mixtral-8x7b-32kseqlen mistral-7b stablelm-zephyr-3b openhermes-2.5-neural-chat-v3-3-slerp gpt-3.5 gpt-4 nous-research openai mistral-ai hugging-face ollama lm-studio fine-tuning mixture-of-experts model-benchmarking inference-optimization model-evaluation open-source decentralized-ai gpu-optimization community-engagement andrej-karpathy yann-lecun richard-blythman gabriel-syme pradeep1148 cyborg_1552
Nous Research AI Discord community discussed attending NeurIPS and organizing future AI events in Australia. Highlights include interest in open-source and decentralized AI projects, with Richard Blythman seeking co-founders. Users shared projects like Photo GPT AI and introduced StableLM Zephyr 3B. The Mixtral model, based on Mistral, sparked debate on performance and GPU requirements, with comparisons to GPT-3.5 and potential competitiveness with GPT-4 after fine-tuning. Tools like Tensorboard, Wandb, and Llamahub were noted for fine-tuning and evaluation. Discussions covered Mixture of Experts (MoE) architectures, fine-tuning with limited data, and inference optimization strategies for ChatGPT. Memes and community interactions referenced AI figures like Andrej Karpathy and Yann LeCun. The community also shared resources such as GitHub links and YouTube videos related to these models and tools.