All tags
Topic: "memory-optimization"
not much happened today
claude-4 claude-4-opus claude-4-sonnet gemini-2.5-pro gemma-3n imagen-4-ultra anthropic google-deepmind openai codebase-understanding coding agentic-performance multimodality text-to-speech video-generation model-integration benchmarking memory-optimization cline amanrsanger ryanpgreenblatt johnschulman2 alexalbert__ nearcyan mickeyxfriedman jeremyphoward gneubig teortaxesTex scaling01 artificialanlys philschmid
Anthropic's Claude 4 models (Opus 4, Sonnet 4) demonstrate strong coding abilities, with Sonnet 4 achieving 72.7% on SWE-bench and Opus 4 at 72.5%. Claude Sonnet 4 excels in codebase understanding and is considered SOTA on large codebases. Criticism arose over Anthropic's handling of ASL-3 security requirements. Demand for Claude 4 is high, with integration into IDEs and support from Cherry Studio and FastHTML. Google DeepMind introduced Gemini 2.5 Pro Deep Think and Gemma 3n, a mobile multimodal model reducing RAM usage by nearly 3x. Google's Imagen 4 Ultra ranks third in the Artificial Analysis Image Arena, available on Vertex AI Studio. Google also promoted Google Beam, an AI video model for immersive 3D experiences, and new text-to-speech models with multi-speaker support. The GAIA benchmark shows Claude 4 Opus and Sonnet leading in agentic performance.
OpenAI buys Jony Ive's io for $6.5b, LMArena lands $100m seed from a16z
gemini-2.5-pro gemini-diffusion openai lmarena a16z mistral-ai google google-deepmind multimodality reasoning code-generation math model-fine-tuning ai-assistants voice memory-optimization sundar_pichai
OpenAI confirmed a partnership with Jony Ive to develop consumer hardware. LMArena secured a $100 million seed round from a16z. Mistral launched a new code model fine-tune. Google DeepMind announced multiple updates at Google I/O 2024, including over a dozen new models and 20 AI products. Key highlights include the release of Gemini 2.5 Pro and Gemini Diffusion, featuring advanced multimodal reasoning, coding, and math capabilities, and integration of Gemini in Google Chrome as an AI browsing assistant. Deep Think enhanced reasoning mode and Project Astra improvements were also introduced, focusing on voice output, memory, and computer control for a universal AI assistant.
Project Stargate: $500b datacenter (1.7% of US GDP) and Gemini 2 Flash Thinking 2
gemini-2.0-flash deepseek-r1 qwen-32b openai softbank oracle arm microsoft nvidia huggingface deepseek-ai long-context quantization code-interpretation model-distillation open-source agi-research model-performance memory-optimization noam-shazeer liang-wenfeng
Project Stargate, a US "AI Manhattan project" led by OpenAI and Softbank, supported by Oracle, Arm, Microsoft, and NVIDIA, was announced with a scale comparable to the original Manhattan project costing $35B inflation adjusted. Despite Microsoft's reduced role as exclusive compute partner, the project is serious but not immediately practical. Meanwhile, Noam Shazeer revealed a second major update to Gemini 2.0 Flash Thinking, enabling 1M token long context usable immediately. Additionally, AI Studio introduced a new code interpreter feature. On Reddit, DeepSeek R1, a distillation of Qwen 32B, was released for free on HuggingChat, sparking discussions on self-hosting, performance issues, and quantization techniques. DeepSeek's CEO Liang Wenfeng highlighted their focus on fundamental AGI research, efficient MLA architecture, and commitment to open-source development despite export restrictions, positioning DeepSeek as a potential alternative to closed-source AI trends.
not much happened today
cosmos nvidia openai robotics autonomous-driving open-source fine-tuning foundation-models memory-optimization sama
NVIDIA has launched Cosmos, an open-source video world model trained on 20 million hours of video, aimed at advancing robotics and autonomous driving. The release sparked debate over its open-source status and technical approach. Additionally, NVIDIA announced Digits, a $3,000 personal AI supercomputer designed to democratize AI computing. The AI community expresses mixed feelings about rapid AI progress, with concerns about AGI, job displacement, and investment hype. Discussions also highlight upcoming tools for fine-tuning AI models at home and foundation models for AI robotics.
not much happened today
vllm deepseek-v3 llamaindex openai deepseek qdrant twilio llamaindex elevenlabs training-efficiency parallelism cpu-offloading gradient-descent mixture-of-experts fp8-precision memory-optimization ai-voice-assistants coding-assistants document-processing version-control learning-rate-schedules federated-learning agentic-systems multi-agent-systems deliberative-alignment chain-of-thought on-device-ai multimodality francois-fleuret daniel-hanchen aaron-defazio fchollet elad-gil wojciech-zaremba richard-socher
ChatGPT, Sora, and the OpenAI API experienced a >5 hour outage but are now restored. Updates to vLLM enable DeepSeek-V3 to run with enhanced parallelism and CPU offloading, improving model deployment flexibility. Discussions on gradient descent in top-k routing MoE and adoption of FP8 precision focus on training efficiency and memory optimization. AIDE, an AI voice medical assistant by Team Therasync, leverages Qdrant, OpenAI, and Twilio. DeepSeek-Engineer offers AI-powered coding assistance with structured outputs. LlamaIndex integrates LlamaCloud and ElevenLabs for large-scale document processing and voice interaction. Insights on version control with ghstack and advocacy for linear decay learning rate schedules highlight best practices in AI development. Experts predict smaller, tighter models, true multimodal models, and on-device AI in 2025. Proposals for planetary-scale federated learning and community AGI moonshots emphasize future AI directions. Discussions on agentic systems, multi-agent workflows, and deliberative alignment through chain of thought reasoning underscore AI safety and alignment efforts.
Perplexity starts Shopping for you
pixtral-large-124b llama-3.1-405b claude-3.6 claude-3.5 stripe perplexity-ai mistral-ai hugging-face cerebras anthropic weights-biases google vllm-project multi-modal image-generation inference context-windows model-performance model-efficiency sdk ai-integration one-click-checkout memory-optimization patrick-collison jeff-weinstein mervenoyann sophiamyang tim-dettmers omarsar0 akhaliq aravsrinivas
Stripe launched their Agent SDK, enabling AI-native shopping experiences like Perplexity Shopping for US Pro members, featuring one-click checkout and free shipping via the Perplexity Merchant Program. Mistral AI released the Pixtral Large 124B multi-modal image model, now on Hugging Face and supported by Le Chat for image generation. Cerebras Systems offers a public inference endpoint for Llama 3.1 405B with a 128k context window and high throughput. Claude 3.6 shows improvements over Claude 3.5 but with subtle hallucinations. The Bi-Mamba 1-bit architecture improves LLM efficiency. The wandb SDK is preinstalled on Google Colab, and Pixtral Large is integrated into AnyChat and supported by vLLM for efficient model usage.
Gemma 2: The Open Model for Everyone
gemma-2 qwen-72b mixtral-8x22b-instruct claude-3.5-sonnet google-deepmind alibaba mistral-ai anthropic knowledge-distillation attention-mechanisms multilingual-models multimodality model-training model-optimization memory-optimization fine-tuning kathleen-kenealy daniel-han
Gemma 2, a 27B parameter model from google-deepmind, was released with innovations like 1:1 local-global attention alternation and logit soft-capping, leveraging knowledge distillation to train smaller models on over 50× the compute-optimal token quantity. The model supports multilingual and multimodal capabilities, with fine-tuning success on over 200 Indic language variants. The Open LLM Leaderboard highlights alibaba's Qwen 72B as the top model, with mistral-ai's Mixtral-8x22B-Instruct also ranking highly. Anthropic launched Claude 3.5 Sonnet, improving intelligence at mid-tier cost and speed. Research on eliminating matrix multiplication in LLMs promises significant memory savings without performance loss. Kathleen Kenealy and Daniel Han provided insights on Gemma 2's tokenizer and attention scaling respectively.
There's Ilya!
chameleon-7b chameleon-34b deepseek-coder-v2 gpt-4-turbo claude-3-opus voco-llama safe-superintelligence-inc openai anthropic meta deepseek google-deepmind parallel-decoding code-generation quantization training-dynamics vision benchmarks datasets image-captioning reasoning memory-optimization ilya-sutskever jan-leike ylecun akhaliq philschmid rohanpaul_ai mervenoyann fchollet
Ilya Sutskever has co-founded Safe Superintelligence Inc shortly after leaving OpenAI, while Jan Leike moved to Anthropic. Meta released new models including Chameleon 7B and 34B with mixed-modal input and unified token space quantization. DeepSeek-Coder-V2 shows code capabilities comparable to GPT-4 Turbo, supporting 338 programming languages and 128K context length. Consistency Large Language Models (CLLMs) enable parallel decoding generating multiple tokens per step. Grokked Transformers demonstrate reasoning through training dynamics affecting memory formation and generalization. VoCo-LLaMA compresses vision tokens with LLMs improving video temporal correlation understanding. The BigCodeBench benchmark evaluates LLMs on 1,140 coding tasks across 139 Python libraries, topped by DeepSeek-Coder-V2 and Claude 3 Opus. PixelProse is a large 16M image-caption dataset with reduced toxicity.
Hybrid SSM/Transformers > Pure SSMs/Pure Transformers
mamba-2-hybrid gpt-4 qwen-72b table-llava-7b nvidia lamini-ai sakana-ai luma-labs mixture-of-experts benchmarking fine-tuning multimodality text-to-video model-performance memory-optimization preference-optimization video-understanding multimodal-tables bryan-catanzaro bindureddy ylecun ctnzr corbtt realsharonzhou andrew-n-carr karpathy _akhaliq omarsar0
NVIDIA's Bryan Catanzaro highlights a new paper on Mamba models, showing that mixing Mamba and Transformer blocks outperforms either alone, with optimal attention below 20%. Mixture-of-Agents (MoA) architecture improves LLM generation quality, scoring 65.1% on AlpacaEval 2.0 versus GPT-4 Omni's 57.5%. The LiveBench AI benchmark evaluates reasoning, coding, writing, and data analysis. A hybrid Mamba-2-Hybrid model with 7% attention surpasses a Transformer on MMLU accuracy, jumping from 50% to 53.6%. GPT-4 performs better at temperature=1. Qwen 72B leads open-source models on LiveBench AI. LaminiAI Memory Tuning achieves 95% accuracy on a SQL agent task, improving over instruction fine-tuning. Sakana AI Lab uses evolutionary strategies for preference optimization. Luma Labs Dream Machine demonstrates advanced text-to-video generation. The MMWorld benchmark evaluates multimodal video understanding, and Table-LLaVa 7B competes with GPT-4V on multimodal table tasks.
Perplexity, the newest AI unicorn
llama-3-8b llama-3-70b llama-3 llava-llama-3-8b-v1_1 phi-3 gpt-3.5 perplexity-ai meta-ai-fair hugging-face groq context-length fine-tuning quantization instruction-following model-comparison multimodality benchmarking memory-optimization model-performance daniel-gross aravind-srinivas
Perplexity doubles its valuation shortly after its Series B with a Series B-1 funding round. Significant developments around Llama 3 include context length extension to 16K tokens, new multimodal LLaVA models outperforming Llama 2, and fine-tuning improvements like QDoRA surpassing QLoRA. The Llama-3-70B model is praised for instruction following and performance across quantization formats. Phi-3 models by Meta AI released in multiple sizes show competitive benchmark results, with the 14B model achieving 78% on MMLU and the 3.8B model nearing GPT-3.5 performance.
Music's Dall-E moment
griffin command-r-plus gpt-4-0613 gpt-4-0314 mistral-8x22b codegemma stable-diffusion-1.5 command-r gemini-1.5 google mistral-ai lmsys cohere model-architecture benchmarking open-source model-quantization memory-optimization inference-speed multimodality finetuning performance-optimization audio-processing andrej-karpathy
Google's Griffin architecture outperforms transformers with faster inference and lower memory usage on long contexts. Command R+ climbs to 6th place on the LMSYS Chatbot Arena leaderboard, surpassing GPT-4-0613 and GPT-4-0314. Mistral AI releases an open-source 8x22B model with a 64K context window and around 130B total parameters. Google open-sources CodeGemma models with pre-quantized 4-bit versions for faster downloads. Ella weights enhance Stable Diffusion 1.5 with LLM for semantic alignment. Unsloth enables 4x larger context windows and 80% memory reduction for finetuning. Andrej Karpathy releases LLMs implemented in pure C for potential performance gains. Command R+ runs in realtime on M2 Max MacBook using iMat q1 quantization. Cohere's Command R model offers low API costs and strong leaderboard performance. Gemini 1.5 impresses with audio capabilities recognizing speech tone and speaker identification from audio clips.
FSDP+QLoRA: the Answer to 70b-scale AI for desktop class GPUs
qlora fsdp inflection-2.5 gpt-4 answer.ai hugging-face meta-ai-fair nvidia inflectionai model-training quantization memory-optimization gradient-checkpointing cpu-offloading fine-tuning model-sharding reinforcement-learning chain-of-thought benchmarking jeremy_howard tim_dettmers yann_lecun
Jeremy Howard and collaborators released a new tool combining FSDP, QLoRA, and HQQ to enable training 70b-parameter models on affordable consumer GPUs like RTX 4090s with only 24GB RAM, overcoming traditional memory constraints that required expensive data center GPUs costing over $150k. The approach shards quantized models across multiple GPUs and uses techniques like gradient checkpointing and CPU offloading to achieve efficient training on desktop-class hardware. The blogpost details challenges and solutions integrating these methods, highlighting a significant cost reduction from $150k to under $2.5k for training large language models. Additionally, Twitter recaps mention Inflection AI's Inflection-2.5 model rivaling GPT-4 in benchmarks with less compute, and Grok improving speed by 3x. Yann LeCun discusses multi-step reasoning training for LLMs.
Karpathy emerges from stealth?
mistral-7b mixtral-8x7b zephyr-7b gpt-4 llama-2 intel mistral-ai audiogen thebloke tokenization quantization model-optimization fine-tuning model-merging computational-efficiency memory-optimization retrieval-augmented-generation multi-model-learning meta-reasoning dataset-sharing open-source ethical-ai community-collaboration andrej-karpathy
Andrej Karpathy released a comprehensive 2-hour tutorial on tokenization, detailing techniques up to GPT-4's tokenizer and noting the complexity of Llama 2 tokenization with SentencePiece. Discussions in AI Discord communities covered model optimization and efficiency, focusing on quantization of models like Mistral 7B and Zephyr-7B to reduce memory usage for consumer GPUs, including Intel's new weight-only quantization algorithm. Efforts to improve computational efficiency included selective augmentation reducing costs by 57.76% and memory token usage versus kNN for Transformers. Challenges in hardware compatibility and software issues were shared, alongside fine-tuning techniques such as LoRA and model merging. Innovative applications of LLMs in retrieval-augmented generation (RAG), multi-model learning, and meta-reasoning were explored. The community emphasized dataset sharing, open-source releases like SDXL VAE encoded datasets and Audiogen AI codecs, and ethical AI use with censorship and guardrails. Collaboration and resource sharing remain strong in these AI communities.
1/17/2024: Help crowdsource function calling datasets
mistral-7b dolphin-2.7-mixtral-8x7b mega-dolphin dolphin-2.6-mistral-7b-dpo llama-cpp lm-studio mistral-ai microsoft hugging-face apple function-calling quantization model-performance gpu-optimization model-selection closed-source memory-optimization linux-server api-fees headless-mode yagilb heyitsyorkie
LM Studio updated its FAQ clarifying its closed-source status and perpetual freeness for personal use with no data collection. The new beta release includes fixes and hints at upcoming 2-bit quantization support. For gaming, models like Dolphin 2.7 Mixtral 8x7B, MegaDolphin, and Dolphin 2.6 Mistral 7B DPO with Q4_K_M quantization were recommended. Discussions highlighted that single powerful GPUs outperform multi-GPU setups due to bottlenecks, with older GPUs like Tesla P40 being cost-effective. Microsoft's AutoGen Studio was introduced but has issues and requires API fees for open-source models. Linux users are advised to use llama.cpp over LM Studio due to lack of headless mode. Additional tools like LLMFarm for iOS and various Hugging Face repositories were also mentioned. "LM Studio must be running to use the local inference server as there is no headless mode available" and "matching model size to GPU memory is key for performance" were notable points.