All tags
Topic: "synthetic-data"
not much happened today
chatgpt o3 o4 bagel-7b medgemma acereason-nemotron-14b codex gemini openai bytedance google nvidia sakana-ai-labs deep-learning-ai gemini agenticseek anthropic agentic-systems multimodality reasoning code-generation prompt-engineering privacy ethical-ai emergence synthetic-data speech-instruction-tuning low-resource-languages humor scaling01 mervenoyann sakananailabs _philschmid omarsar0 teortaxestex andrewlampinen sedielem cis_female
OpenAI plans to evolve ChatGPT into a super-assistant by 2025 with models like o3 and o4 enabling agentic tasks and supporting a billion users. Recent multimodal and reasoning model releases include ByteDance's BAGEL-7B, Google's MedGemma, and NVIDIA's ACEReason-Nemotron-14B. The Sudoku-Bench Leaderboard highlights ongoing challenges in AI creative reasoning. In software development, OpenAI's Codex aids code generation and debugging, while Gemini's Context URL tool enhances prompt context. AgenticSeek offers a local, privacy-focused alternative for autonomous agents. Ethical concerns are raised about AGI development priorities and Anthropic's alignment with human values. Technical discussions emphasize emergence in AI and training challenges, with humor addressing misconceptions about Gemini 3.0 and async programming in C. A novel synthetic speech training method enables instruction tuning of LLMs without real speech data, advancing low-resource language support.
OpenAI adopts MCP
gemini-2.5-pro gemini-1.5-pro gemini-2.0-flash qwen-2.5-omni-7b deepseek-v3-0324 deepseek-r1 openai google-deepmind alibaba togethercompute model-benchmarking multimodality reasoning scaling-laws model-quantization synthetic-data model-performance context-windows speech-recognition translation audio-processing video-processing swyx
OpenAI announced support for MCP, a significant technical update. Google's Gemini 2.5 Pro leads benchmarks with top scores in MMLU-Pro (86%), GPQA Diamond (83%), and AIME 2024 (88%), featuring a 1 million token context window and multimodal inputs. Alibaba's Qwen 2.5 Omni 7B was released as a fully multimodal, interactive, open-source model with a novel "thinker-talker" architecture supporting voice and video chat. DeepSeek V3-0324 outperforms its predecessor on multiple benchmarks. Research on reasoning features in large language models using sparse autoencoders was highlighted, alongside a study on scaling laws of synthetic data showing performance plateaus near 300B tokens. Discussions also covered the fastest output speeds of Gemini models and concerns about over-reliance on benchmarks for intelligence measurement. Swyx will curate the Data Council AI Engineering Track in April.
not much happened today
rstar-math o1-preview qwen2.5-plus qwen2.5-coder-32b-instruct phi-4 claude-3.5-sonnet openai anthropic alibaba microsoft cohere langchain weights-biases deepseek rakuten rbc amd johns-hopkins math process-reward-model mcts vision reasoning synthetic-data pretraining rag automation private-deployment multi-step-workflow open-source-dataset text-embeddings image-segmentation chain-of-thought multimodal-reasoning finetuning recursive-self-improvement collaborative-platforms ai-development partnerships cuda triton ai-efficiency ai-assisted-coding reach_vb rasbt akshaykagrawal arankomatsuzaki teortaxestex aidangomez andrewyng
rStar-Math surpasses OpenAI's o1-preview in math reasoning with 90.0% accuracy using a 7B LLM and MCTS with a Process Reward Model. Alibaba launches Qwen Chat featuring Qwen2.5-Plus and Qwen2.5-Coder-32B-Instruct models enhancing vision-language and reasoning. Microsoft releases Phi-4, trained on 40% synthetic data with improved pretraining. Cohere introduces North, a secure AI workspace integrating LLMs, RAG, and automation for private deployments. LangChain showcases a company research agent with multi-step workflows and open-source datasets. Transformers.js demos released for text embeddings and image segmentation in JavaScript. Research highlights include Meta Meta-CoT for enhanced chain-of-thought reasoning, DeepSeek V3 with recursive self-improvement, and collaborative AI development platforms. Industry partnerships include Rakuten with LangChain, North with RBC supporting 90,000 employees, and Agent Laboratory collaborating with AMD and Johns Hopkins. Technical discussions emphasize CUDA and Triton for AI efficiency and evolving AI-assisted coding stacks by Andrew Ng.
DeepSeek v3: 671B finegrained MoE trained for $5.5m USD of compute on 15T tokens
deepseek-v3 gpt-4o claude-3.5-sonnet llama-3 deepseek-ai hugging-face openai anthropic mixture-of-experts model-training model-optimization reinforcement-learning chain-of-thought multi-token-prediction synthetic-data model-distillation fine-tuning attention-mechanisms gpu-optimization nrehiew_ denny_zhou
DeepSeek-V3 has launched with 671B MoE parameters and trained on 14.8T tokens, outperforming GPT-4o and Claude-3.5-sonnet in benchmarks. It was trained with only 2.788M H800 GPU hours, significantly less than Llama-3's 30.8M GPU-hours, showcasing major compute efficiency and cost reduction. The model is open-source and deployed via Hugging Face with API support. Innovations include native FP8 mixed precision training, Multi-Head Latent Attention scaling, distillation from synthetic reasoning data, pruning and healing for MoEs with up to 256 experts, and a new multi-token prediction objective enabling lookahead token planning. Research highlights also cover the OREO method and Natural Language Reinforcement Learning (NLRL) for multi-step reasoning and agent control.
not much happened today
qwen-o1 qvq claude-3.5-sonnet gpt-4o o3 o3-mini alibaba openai mit idsia llamaindex ollama vision benchmarking llm-calibration intentionality alignment-faking deliberative-alignment artificial-life gdpr-compliance contract-review-agent app-creation synthetic-data post-transformers smol-models agents bret-taylor
The Qwen team launched QVQ, a vision-enabled version of their experimental QwQ o1 clone, benchmarking comparably to Claude 3.5 Sonnet. Discussions include Bret Taylor's insights on autonomous software development distinct from the Copilot era. The Latent Space LIVE! talks cover highlights of 2024 AI startups, vision, open models, post-transformers, synthetic data, smol models, and agents. Twitter recaps by Claude 3.5 Sonnet highlight proposals for benchmarks measuring LLM calibration and falsehood confidence, with QVQ outperforming GPT-4o and Claude Sonnet 3.5. AI alignment debates focus on intentionality and critiques of alignment faking in models like Claude. Updates from OpenAI include new o3 and o3-mini models and a deliberative alignment strategy. The ASAL project is a collaboration between MIT, OpenAI, and Swiss AI Lab IDSIA to automate artificial life discovery. Personal stories reveal frustrations with USCIS green card denials despite high qualifications. New tools like GeminiCoder enable rapid app creation, and a contract review agent using Reflex and Llama Index checks GDPR compliance. Holiday greetings and memes were also shared.
Tencent's Hunyuan-Large claims to beat DeepSeek-V2 and Llama3-405B with LESS Data
claude-3.5-haiku llama-3-1 llama-3-2 mlx-lm tencent anthropic meta-ai-fair togethercompute llamaindex mixture-of-experts synthetic-data model-scaling model-architecture model-optimization kv-cache-quantization react fine-tuning scaling-laws model-efficiency model-deployment multimodality
Tencent released a notable >300B parameter MoE model pretrained on 7T tokens, including 1.5T synthetic data generated via Evol-Instruct. The model introduces novel techniques like "recycle routing" and expert-specific learning rates, alongside a compute-efficient scaling law for MoE active parameters. However, its custom license restricts use in the EU and by companies with over 100M MAU, and it avoids China-sensitive queries. Meanwhile, Anthropic launched Claude 3.5 Haiku, now available on multiple platforms, praised for intelligence and speed but criticized for a 10x price increase. Meta opened Llama AI to the U.S. defense sector, and a Llama Impact Hackathon offers a $15K prize for projects using Llama 3.1 & 3.2 Vision. LlamaIndex released a React chat UI component with Tailwind CSS and LLM backend integrations. The MLX LM model advances text generation speed and efficiency with KV cache quantization.
The AI Search Wars Have Begun — SearchGPT, Gemini Grounding, and more
gpt-4o o1-preview claude-3.5-sonnet universal-2 openai google gemini nyt perplexity-ai glean nvidia langchain langgraph weights-biases cohere weaviate fine-tuning synthetic-data distillation hallucinations benchmarking speech-to-text robotics neural-networks ai-agents sam-altman alexalbert__ _jasonwei svpino drjimfan virattt
ChatGPT launched its search functionality across all platforms using a fine-tuned version of GPT-4o with synthetic data generation and distillation from o1-preview. This feature includes a Chrome extension promoted by Sam Altman but has issues with hallucinations. The launch coincides with Gemini introducing Search Grounding after delays. Notably, The New York Times is not a partner due to a lawsuit against OpenAI. The AI search competition intensifies with consumer and B2B players like Perplexity and Glean. Additionally, Claude 3.5 Sonnet achieved a new benchmark record on SWE-bench Verified, and a new hallucination evaluation benchmark, SimpleQA, was introduced. Other highlights include the Universal-2 speech-to-text model with 660M parameters and HOVER, a neural whole-body controller for humanoid robots trained in NVIDIA Isaac simulation. AI hedge fund teams using LangChain and LangGraph were also showcased. The news is sponsored by the RAG++ course featuring experts from Weights & Biases, Cohere, and Weaviate.
not much happened today
claudette llama-3-1 yi-lightning gpt-4o claude-3.5-sonnet answer-ai tencent notebooklm motherduck perplexity dropbox openai meta-ai-fair yi-ai zyphra-ai anthropic langchain openai synthetic-data fine-tuning sql audio-processing on-device-ai dataset-release transformer llm-reasoning ai-safety code-generation ai-pricing ai-job-market fchollet aravsrinivas svpino swyx
Answer.ai launched fastdata, a synthetic data generation library using
claudette
and Tencent's Billion Persona paper. NotebookLM became customizable, and Motherduck introduced notable LLMs in SQL implementations. Perplexity and Dropbox announced competitors to Glean. OpenAI unveiled audio chat completions priced at 24 cents per minute. Meta AI released Llama 3.1, powering Lenovo AI Now's on-device agent. Yi-Lightning model ranked #6 globally, surpassing GPT-4o. Zyphra AI released the large Zyda-2 dataset with 5 trillion tokens. François Chollet clarified transformer architecture as set-processing, not sequence-processing. Research suggests memorization aids LLM reasoning. Anthropic updated its Responsible Scaling Policy for AI safety. Tools like Perplexity Finance, Open Canvas by LangChain, and AlphaCodium code generation tool were highlighted. Approximately $500 million was raised for AI agent startups, with ongoing discussions on AI's job market impact. Combining prompt caching with the Batches API can yield a 95% discount on Claude 3.5 Sonnet tokens. State of AI 2024
llama-3-2 bitnet cerebras daily pipecat meta-ai-fair anthropic multimodality synthetic-data protein-structure-prediction neural-networks statistical-mechanics conversational-ai voice-ai hackathon ipo model-release geoffrey-hinton john-hopfield demis-hassabis john-jumper david-baker
Nathan Benaich's State of AI Report in its 7th year provides a comprehensive overview of AI research and industry trends, including highlights like BitNet and the synthetic data debate. Cerebras is preparing for an IPO, reflecting growth in AI compute. A hackathon hosted by Daily and the Pipecat community focuses on conversational voice AI and multimodal experiences with $20,000 in prizes. Nobel Prizes in Physics and Chemistry were awarded for AI research: Geoffrey Hinton and John Hopfield for neural networks and statistical mechanics, and Demis Hassabis, John Jumper, and David Baker for AlphaFold and protein structure prediction. Meta released Llama 3.2 with multimodal capabilities, accompanied by educational resources and performance updates. "This recognizes the impact of deep neural networks on society" and "tremendous impact of AlphaFold and ML-powered protein structure prediction" were noted by experts.
Contextual Document Embeddings: `cde-small-v1`
llama-3 cde-small-v1 gemini-1.5-flash-8b chatgpt meta-ai-fair openai google-deepmind weights-biases togethercompute contextual-embeddings contextual-batching video-generation synthetic-data model-efficiency training-techniques rag algorithmic-efficiency jack-morris sasha-rush tim-brooks demis-hassabis karina-nguyen
Meta announced a new text-to-video model, Movie Gen, claiming superior adaptation of Llama 3 to video generation compared to OpenAI's Sora Diffusion Transformers, though no release is available yet. Researchers Jack Morris and Sasha Rush introduced the cde-small-v1 model with a novel contextual batching training technique and contextual embeddings, achieving strong performance with only 143M parameters. OpenAI launched Canvas, a collaborative interface for ChatGPT with synthetic data training. Google DeepMind welcomed Tim Brooks to work on video generation and world simulators. Google released Gemini 1.5 Flash-8B, improving cost and rate limits with algorithmic efficiency.
Not much technical happened today
whisper-v3-turbo llama-3 llamaindex openai poolside liquidai perplexity-ai meta-ai-fair cohere fujitsu mixture-of-experts context-windows model-optimization fine-tuning quantization model-training alignment synthetic-data model-architecture agentic-ai nick-turley arav-srinivas francois-fleuret finbarr-timbers lewtun francois-chollet jerry-j-liu mmitchell-ai jxnlco
OpenAI announced raising $6.6B in new funding at a $157B valuation, with ChatGPT reaching 250M weekly active users. Poolside raised $500M to advance AGI development. LiquidAI introduced three new MoE models (1B, 3B, 40B) with a 32k context window and efficient token handling. OpenAI released Whisper V3 Turbo, an open-source multilingual model with significant speed improvements. Meta AI FAIR is hiring research interns focusing on LLM reasoning, alignment, synthetic data, and novel architectures. Cohere partnered with Fujitsu to launch Takane, a custom Japanese model. Technical discussions included challenges in LoRA fine-tuning, float8 quantization in Keras, and new tools like create-llama for agent templates. Industry commentary raised concerns about AI development priorities and highlighted freelancing opportunities in AI.
Reflection 70B, by Matt from IT Department
llama-3.1-70b llama-3 claude-3.5-sonnet hyperwrite glaive fine-tuning chain-of-thought instruction-following synthetic-data quantization model-evaluation prompt-engineering matt-shumer sahil-chaudhary
Reflection Tuning technique has been used by a two-person team from Hyperwrite and Glaive to finetune llama-3.1-70b, showing strong performance improvements with minimal synthetic data. The approach builds on the concept of adding
thinking
and reflection
steps to outputs, related to the Chain of Thought method. Despite some criticisms like contamination concerns, worse coding performance, and reliance on system prompts, the model has received positive reception and comparisons to claude-3.5-sonnet. The work highlights efficient instruction tuning and synthetic data generation for large models. not much happened today
qwen2-math-72b gpt-4o claude-3.5-sonnet gemini-1.5-pro llama-3.1-405b idefics3-llama-8b anthropic google mistral-ai llamaindex math fine-tuning synthetic-data reinforcement-learning bug-bounty visual-question-answering open-source retrieval-augmented-generation agentic-ai ai-safety policy rohanpaul_ai anthropicai mervenoyann jeremyphoward omarsar0 ylecun bindureddy
Qwen2-Math-72B outperforms GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, and Llama-3.1-405B on math benchmarks using synthetic data and advanced optimization techniques. Google AI cuts pricing for Gemini 1.5 Flash by up to 78%. Anthropic expands its bug bounty program targeting universal jailbreaks in next-gen safety systems. Tutorial on QLoRA fine-tuning of IDEFICS3-Llama 8B for visual question answering released. A Chinese open weights model surpasses previous MATH benchmark records. Surveys on Mamba models and LLM-based agents for software engineering highlight advancements and applications. Open-source tools like R2R RAG engine and LlamaIndex Workflows simplify building complex AI applications. Mistral AI introduces customizable AI agents. Concerns raised about California bill SB 1047's focus on existential risk and debates on banning open-source AI. Memes and humor continue in AI communities.
Apple Intelligence Beta + Segment Anything Model 2
llama-3-405b llama-3 segment-anything-model meta-ai-fair apple image-segmentation memory-attention video-processing pretraining cloud-tpus post-training synthetic-data instruction-following reasoning writing benchmarking bindureddy maximelabonne reach_vb
Meta advanced its open source AI with a sequel to the Segment Anything Model, enhancing image segmentation with memory attention for video applications using minimal data and compute. Apple Intelligence delayed its official release to iOS 18.1 in October but launched developer previews on MacOS Sequoia, iOS 18, and iPadOS 18, accompanied by a detailed 47-page paper revealing extensive pretraining on 6.3T tokens and use of Cloud TPUs rather than Apple Silicon. The paper highlights improvements in instruction following, reasoning, and writing through post-training and synthetic data. Benchmarks show Apple’s model scores lower than Llama 3, but with trusted human evaluations. Additionally, Meta released Llama 3.1 with a 405B parameter model, marking a significant open-source frontier model release.
AlphaProof + AlphaGeometry2 reach 1 point short of IMO Gold
gemini alphageometry-2 alphaproof llama-3-1-405b llama-3-70b llama-3-8b mistral-large-2 google-deepmind meta-ai-fair mistral-ai neurosymbolic-ai mathematical-reasoning synthetic-data knowledge-sharing model-fine-tuning alpha-zero multilinguality context-windows model-scaling benchmarking performance-comparison tim-gowers guillaume-lample osanseviero
Search+Verifier highlights advances in neurosymbolic AI during the 2024 Math Olympics. Google DeepMind's combination of AlphaProof and AlphaGeometry 2 solved four out of six IMO problems, with AlphaProof being a finetuned Gemini model using an AlphaZero approach, and AlphaGeometry 2 trained on significantly more synthetic data with a novel knowledge-sharing mechanism. Despite impressive results, human judges noted the AI required much longer time than human competitors. Meanwhile, Meta AI released Llama 3.1 with a 405B parameter model and smaller variants, and Mistral AI launched Mistral Large 2 with 123B parameters and 128k context windows, outperforming Llama 3.1 on coding tasks and multilingual benchmarks. This marks significant progress in AI mathematical reasoning, model scaling, and multilingual capabilities.
Llama 3.1: The Synthetic Data Model
llama-3-405b llama-3-1 llama-3 meta-ai-fair groq fireworks synthetic-data fine-tuning reinforcement-learning multilinguality long-context tool-use code-generation math model-licensing inference-speed model-deployment bindureddy thomas
Meta AI has released Llama 3.1, including a 405B parameter model that triggers regulatory considerations like the EU AI Act and SB 1047. The model incorporates extensive synthetic data techniques for code, math, multilinguality, long context, and tool use fine-tuning, with RLHF using synthetic preference data from Llama 2. The launch was coordinated across major inference providers, with Groq demonstrating 750 tokens per second inference speed and Fireworks leading in pricing. The updated license explicitly allows synthetic data generation, marking a significant step in open frontier-class LLMs and cost-efficiency improvements since March.
Llama 3.1 Leaks: big bumps to 8B, minor bumps to 70b, and SOTA OSS 405b model
llama-3-1-405b llama-3-8b llama-3-70b llama-3-1-8b gpt-4o gpt-4o-mini claude-3-5 qwen-2 meta-ai-fair openai alibaba multilinguality code-generation context-windows model-training synthetic-data benchmarking reasoning fine-tuning model-performance dataset-release swyx philschmid jjitsev lewtun teknium1 adcock_brett
Llama 3.1 leaks reveal a 405B dense model with 128k context length, trained on 39.3M GPU hours using H100-80GB GPUs, and fine-tuned with over 25M synthetic examples. The model shows significant benchmark improvements, especially for the 8B and 70B variants, with some evals suggesting the 70B outperforms GPT-4o. GPT-4o Mini launched as a cost-efficient variant with strong performance but some reasoning weaknesses. Synthetic datasets like NuminaMath enable models such as Alibaba Qwen 2 to surpass GPT-4o and Claude 3.5 in math competitions. Discussions include reasoning task benchmarks and dataset building for improved reasoning.
SciCode: HumanEval gets a STEM PhD upgrade
gpt-4 claude-3.5-sonnet llama-3-7b llama-3 dolphin-2.9.3-yi-1.5-34b-32k-gguf anthropic hugging-face nvidia benchmarks coding model-training gpu-optimization model-performance synthetic-data compiler-optimization zero-shot-learning yi-tay rohanpaul_ai alexalbert__ tri_dao abacaj
PhD-level benchmarks highlight the difficulty of coding scientific problems for LLMs, with GPT-4 and Claude 3.5 Sonnet scoring under 5% on the new SciCode benchmark. Anthropic doubled the max output token limit for Claude 3.5 Sonnet to 8192 tokens. The Q-GaLore method enables training LLaMA-7B on a single 16GB GPU. The Mosaic compiler now generates efficient code for NVIDIA H100 GPUs. The Dolphin 2.9.3-Yi-1.5-34B-32k-GGUF model on Hugging Face has over 111k downloads. Llama 3 shows strong performance, achieving 90% zero-shot accuracy on the MATH dataset. Discussions continue on the limitations and forms of synthetic data for model training.
Microsoft AgentInstruct + Orca 3
mistral-7b orca-2.5 microsoft-research apple tencent hugging-face synthetic-data fine-tuning instruction-following transformers model-performance hallucination-detection dataset-quality flashattention mixture-of-experts philschmid sama bindureddy rohanpaul_ai zachtratar dair_ai
Microsoft Research released AgentInstruct, the third paper in its Orca series, introducing a generative teaching pipeline that produces 25.8 million synthetic instructions to fine-tune mistral-7b, achieving significant performance gains: +40% AGIEval, +19% MMLU, +54% GSM8K, +38% BBH, +45% AlpacaEval, and a 31.34% reduction in hallucinations. This synthetic data approach follows the success of FineWeb and Apple's Rephrasing research in improving dataset quality. Additionally, Tencent claims to have generated 1 billion diverse personas for synthetic data. On AI Twitter, notable discussions included a shooting incident at a Trump rally and recent ML research highlights such as FlashAttention-3, RankRAG, and Mixture of A Million Experts.
We Solved Hallucinations
gpt-2 flashattention-3 lynx meta-ai-fair nvidia princeton colfax patronus-ai databricks mosaic-ai openai compute-hardware gpu-optimization flashattention llm-evaluation hallucination-detection vision benchmarking synthetic-data model-training karpathy tri_dao giffmana vikhyatk dbrxmosaicai
Reddit's URL structure causes link errors in AI-generated summaries, especially with NSFW content affecting models like Claude and GPT-4. The team fixed this glitch while still leveraging LLMs for summarizing Reddit content. GPT-2 training costs have dramatically dropped to ~$672 using H100 GPUs and software improvements like CUDA and FlashAttention. FlashAttention-3 was released, achieving up to 740 TFLOPS on H100 GPUs, with FP8 nearing 1.2 PFLOPS, developed collaboratively by Meta, NVIDIA, Princeton, and Colfax. Hopper GPUs enable major speedups with new hardware features. Synthetic data may not improve vision tasks, as shown in recent research. The Avocado360 benchmark evaluates vision-language models' ability to detect avocados in images. Lynx, a hallucination detection model for LLMs, was introduced for real-world healthcare and fintech applications, trained by Patronus AI on Databricks Mosaic AI using Composer.
GraphRAG: The Marriage of Knowledge Graphs and RAG
gemma-2 llama-3-70b claude-3.5-sonnet nemotron-340b qwen2-72b llama-3 microsoft-research anthropic nvidia hugging-face retrieval-augmented-generation knowledge-graphs token-usage inference-time attention-mechanisms instruction-following coding math long-range-reasoning synthetic-data dataset-release fine-tuning context-windows function-calling travis-fischer rasbt alexandr-wang osanseviero rohanpaul_ai hamelhusain svpino aaaazzam omarsar0
Microsoft Research open sourced GraphRAG, a retrieval augmented generation (RAG) technique that extracts knowledge graphs from sources and clusters them for improved LLM answers, though it increases token usage and inference time. Gemma 2 models were released focusing on efficient small LLMs with innovations like sliding window attention and RMS norm, nearly matching the larger Llama 3 70B. Anthropic's Claude 3.5 Sonnet leads in instruction following and coding benchmarks, while Nvidia's Nemotron 340B model was released in June. Qwen2-72B tops the HuggingFace Open LLM leaderboard excelling in math and long-range reasoning. Discussions on RAG highlighted its limitations and improvements in context usage via function calls. A persona-driven synthetic data generation approach introduced 1 billion personas, with a fine-tuned model matching GPT-4 performance on math benchmarks at 7B scale. The 200GB AutoMathText dataset was also noted for math data synthesis.
Gemini Nano: 50-90% of Gemini Pro, <100ms inference, on device, in Chrome Canary
gemini-nano gemini-pro claude-3.5-sonnet gpt-4o deepseek-coder-v2 glm-0520 nemotron-4-340b gpt-4-turbo-0409 google gemini huggingface anthropic deepseek zhipu-ai tsinghua nvidia model-quantization prompt-api optimization model-weights benchmarking code-generation math synthetic-data automatic-differentiation retrieval-augmented-generation mitigating-memorization tree-search inference-time-algorithms adcock_brett dair_ai lmsysorg
The latest Chrome Canary now includes a feature flag for Gemini Nano, offering a prompt API and on-device optimization guide, with models Nano 1 and 2 at 1.8B and 3.25B parameters respectively, showing decent performance relative to Gemini Pro. The base and instruct-tuned model weights have been extracted and posted to HuggingFace. In AI model releases, Anthropic launched Claude 3.5 Sonnet, which outperforms GPT-4o on some benchmarks, is twice as fast as Opus, and is free to try. DeepSeek-Coder-V2 achieves 90.2% on HumanEval and 75.7% on MATH, surpassing GPT-4-Turbo-0409, with models up to 236B parameters and 128K context length. GLM-0520 from Zhipu AI/Tsinghua ranks highly in coding and overall benchmarks. NVIDIA announced Nemotron-4 340B, an open model family for synthetic data generation. Research highlights include TextGrad, a framework for automatic differentiation on textual feedback; PlanRAG, an iterative plan-then-RAG decision-making technique; a paper on goldfish loss to mitigate memorization in LLMs; and a tree search algorithm for language model agents.
Nemotron-4-340B: NVIDIA's new large open models, built on syndata, great for syndata
nemotron-4-340b mixtral llama-3 gemini-1.5 gpt-4o mamba-2-hybrid-8b samba-3.8b-instruct dolphin-2.9.3 faro-yi-9b-dpo nvidia hugging-face mistral-ai llamaindex cohere gemini mistral synthetic-data model-alignment reward-models fine-tuning long-context model-scaling inference-speed mixture-of-agents open-source-models model-training instruction-following context-windows philipp-schmid bryan-catanzaro oleksii-kuchaiev rohanpaul_ai cognitivecompai _philschmid 01ai_yi
NVIDIA has scaled up its Nemotron-4 model from 15B to a massive 340B dense model, trained on 9T tokens, achieving performance comparable to GPT-4. The model alignment process uses over 98% synthetic data, with only about 20K human-annotated samples for fine-tuning and reward model training. The synthetic data generation pipeline is open-sourced, including synthetic prompts and preference data generation. The base and instruct versions outperform Mixtral and Llama 3, while the reward model ranks better than Gemini 1.5, Cohere, and GPT-4o. Other notable models include Mamba-2-Hybrid 8B, which is up to 8x faster than Transformers and excels on long-context tasks, Samba-3.8B-instruct for infinite context length with linear complexity, Dolphin-2.9.3 tiny models optimized for low-resource devices, and Faro Yi 9B DPO with a 200K context window running efficiently on 16GB VRAM. The Mixture-of-Agents technique boosts open-source LLMs beyond GPT-4 Omni on AlpacaEval 2.0.
Cursor reaches >1000 tok/s finetuning Llama3-70b for fast file editing
gpt-4 gpt-4o gpt-4-turbo gpt-4o-mini llama bloom stable-diffusion cursor openai anthropic google-deepmind huggingface speculative-decoding code-edits multimodality image-generation streaming tool-use fine-tuning benchmarking mmlu model-performance evaluation synthetic-data context-windows sama abacaj imjaredz erhartford alexalbert svpino maximelabonne _philschmid
Cursor, an AI-native IDE, announced a speculative edits algorithm for code editing that surpasses GPT-4 and GPT-4o in accuracy and latency, achieving speeds of over 1000 tokens/s on a 70b model. OpenAI released GPT-4o with multimodal capabilities including audio, vision, and text, noted to be 2x faster and 50% cheaper than GPT-4 turbo, though with mixed coding performance. Anthropic introduced streaming, forced tool use, and vision features for developers. Google DeepMind unveiled Imagen Video and Gemini 1.5 Flash, a small model with a 1M-context window. HuggingFace is distributing $10M in free GPUs for open-source AI models like Llama, BLOOM, and Stable Diffusion. Evaluation insights highlight challenges with LLMs on novel problems and benchmark saturation, with new benchmarks like MMLU-Pro showing significant drops in top model performance.
Meta Llama 3 (8B, 70B)
llama-3-8b llama-3-70b llama-3-400b stable-diffusion-3 mixtral-8x22b-instruct-v0.1 vasa-1 meta-ai-fair stability-ai boston-dynamics microsoft mistral-ai hugging-face transformer tokenization model-training benchmarking robotics natural-language-processing real-time-processing synthetic-data dataset-cleaning behavior-trees ai-safety model-accuracy api model-release humor helen-toner
Meta partially released Llama 3 models including 8B and 70B variants, with a 400B variant still in training, touted as the first GPT-4 level open-source model. Stability AI launched Stable Diffusion 3 API with model weights coming soon, showing competitive realism against Midjourney V6. Boston Dynamics unveiled an electric humanoid robot Atlas, and Microsoft introduced the VASA-1 model generating lifelike talking faces at 40fps on RTX 4090. Mistral AI, a European OpenAI rival, is seeking $5B funding with its Mixtral-8x22B-Instruct-v0.1 model achieving 100% accuracy on 64K context benchmarks. AI safety discussions include calls from former OpenAI board member Helen Toner for audits of top AI companies, and the Mormon Church released AI usage principles. New AI development tools include Ctrl-Adapter for diffusion models, Distilabel 1.0.0 for synthetic dataset pipelines, Data Bonsai for data cleaning with LLMs, and Dendron for building LLM agents with behavior trees. Memes highlight AI development humor and cultural references. The release of Llama 3 models features improved reasoning, a 128K token vocabulary, 8K token sequences, and grouped query attention.
not much happened today
llama-2-70b llama-2-7b mistral-7b qwen-1.5 llava microsoft mistral-ai ollama fine-tuning synthetic-data retrieval-augmented-generation embeddings hardware-optimization performance-benchmarks model-memory multimodality
The Reddit community /r/LocalLlama discusses fine-tuning and training LLMs, including tutorials and questions on training models with specific data like dictionaries and synthetic datasets with 25B+ tokens. Users explore retrieval-augmented generation (RAG) challenges with models like mistral-7b and embedding generation for EEG brain activity. Discussions include hardware optimization for running llama-2-70b locally under budget constraints, and performance benchmarks for qwen-1.5 models. There is interest in extending LLM capabilities, such as converting llama-2-7b into a vision-capable model like llava and improving model memory for longer context retention.
Welcome /r/LocalLlama!
cerebrum-8x7b mixtral-7b gpt-3.5-turbo gemini-pro moistral-11b-v1 claude-opus qwen-vl-chat sakana openinterpreter reddit aether-research mistral-ai nvidia lmdeploy model-merging benchmarking quantization performance-optimization deployment vision fine-tuning training-data synthetic-data rag gui
Sakana released a paper on evolutionary model merging. OpenInterpreter launched their O1 devkit. Discussions highlight Claude Haiku's underrated performance with 10-shot examples. On Reddit's IPO, AINews introduces Reddit summaries starting with /r/LocalLlama, covering upcoming subreddits like r/machinelearning and r/openai. Aether Research released Cerebrum 8x7b based on Mixtral, matching GPT-3.5 Turbo and Gemini Pro on reasoning tasks, setting a new open-source reasoning SOTA. Moistral 11B v1 finetuned model from Cream-Phi-2 creators was released. A creative writing benchmark uses Claude Opus as judge. Hobbyists explore 1.58 BitNet ternary quantization and 1-bit LLMs training. Nvidia's Blackwell (h200) chip supports FP4 precision quantization. LMDeploy v0.2.6+ enables efficient vision-language model deployment with models like Qwen-VL-Chat. Users seek GUIs for LLM APIs with plugin and RAG support. Pipelines for synthetic training data generation and fine-tuning language models for chat are discussed.
Claude 3 just destroyed GPT 4 (see for yourself)
claude-3 claude-3-opus claude-3-sonnet claude-3-haiku gpt-4 anthropic amazon google claude-ai multimodality vision long-context model-alignment model-evaluation synthetic-data structured-output instruction-following model-speed cost-efficiency benchmarking safety mmitchell connor-leahy
Claude 3 from Anthropic launches in three sizes: Haiku (small, unreleased), Sonnet (medium, default on claude.ai, AWS, and GCP), and Opus (large, on Claude Pro). Opus outperforms GPT-4 on key benchmarks like GPQA, impressing benchmark authors. All models support multimodality with advanced vision capabilities, including converting a 2-hour video into a blog post. Claude 3 offers improved alignment, fewer refusals, and extended context length up to 1 million tokens with near-perfect recall. Haiku is noted for speed and cost-efficiency, processing dense research papers in under three seconds. The models excel at following complex instructions and producing structured outputs like JSON. Safety improvements reduce refusal rates, though some criticism remains from experts. Claude 3 is trained on synthetic data and shows strong domain-specific evaluation results in finance, medicine, and philosophy.
... and welcome AI Twitter!
mistral-large google-gemini google openai apple stripe ai-ethics multilinguality on-device-ai convolutional-neural-networks synthetic-data financial-transaction-systems corporate-culture humor margaret-mitchell john-carmack guillaume-lample sundar-pichai delip-rao santiago-l-valdarrama alex-wang yann-lecun pieter-levels francois-chollet dheliat
The AI Twitter discourse from 2/27-28/2024 covers a broad spectrum including ethical considerations highlighted by Margaret Mitchell around Google Gemini's launch, and John Carmack's insights on evolving coding skills in the AI era. Guillaume Lample announced the release of the Mistral Large multilingual model. Discussions also touched on potential leadership changes at Google involving Sundar Pichai, and OpenAI's possible entry into the synthetic data market as noted by Delip Rao. Technological advancements include Yann LeCun's commentary on running LLMs on mobile devices and Alex Wang's praise for the Apple Vision Pro. Financial platform issues were raised by Pieter Levels regarding Stripe's payment policies. The cultural dynamics within big tech were discussed by François Chollet and Dhéliat. The lighter side of AI was represented by memes and humor from Pieter Levels and AISafetyMemes. This summary reflects the fast-evolving AI landscape blending technical innovation, corporate strategy, ethics, and community culture.
1/9/2024: Nous Research lands $5m for Open Source AI
qlora phi-3 mixtral ollama nous-research openai rabbit-tech context-window fine-tuning synthetic-data activation-beacon transformer-architecture seed-financing real-time-voice-agents trillion-parameter-models kenakafrosty _stilic_ teknium
Nous Research announced a $5.2 million seed financing focused on Nous-Forge, aiming to embed transformer architecture into chips for powerful servers supporting real-time voice agents and trillion parameter models. Rabbit R1 launched a demo at CES with mixed reactions. OpenAI shipped the GPT store and briefly leaked an upcoming personalization feature. A new paper on Activation Beacon proposes a solution to extend LLMs' context window significantly, with code to be released on GitHub. Discussions also covered QLORA, fine-tuning, synthetic data, and custom architectures for LLMs.
1/8/2024: The Four Wars of the AI Stack
mixtral mistral nous-research openai mistral-ai hugging-face context-window distributed-models long-context hierarchical-embeddings agentic-rag fine-tuning synthetic-data oil-and-gas embedding-datasets mixture-of-experts model-comparison
The Nous Research AI Discord discussions highlighted several key topics including the use of DINO, CLIP, and CNNs in the Obsidian Project. A research paper on distributed models like DistAttention and DistKV-LLM was shared to address cloud-based LLM service challenges. Another paper titled 'Self-Extend LLM Context Window Without Tuning' argued that existing LLMs can handle long contexts inherently. The community also discussed AI models like Mixtral, favored for its 32k context window, and compared it with Mistral and Marcoroni. Other topics included hierarchical embeddings, agentic retrieval-augmented generation (RAG), synthetic data for fine-tuning, and the application of LLMs in the oil & gas industry. The launch of the AgentSearch-V1 dataset with one billion embedding vectors was also announced. The discussions covered mixture-of-experts (MoE) implementations and the performance of smaller models.
1/4/2024: Jeff Bezos backs Perplexity's $520m Series B.
wizardcoder-33b-v1.1 mobilellama-1.4b-base shearedllama tinyllama mixtral-8x7b perplexity anthropic google nous-research mistral-ai hugging-face document-recall rnn-memory synthetic-data benchmarking multi-gpu-support context-length model-architecture sliding-window-attention model-parallelism gpu-optimization jeff-bezos
Perplexity announced their Series B funding round with notable investor Jeff Bezos, who previously invested in Google 25 years ago. Anthropic is raising $750 million, projecting at least $850 million in annualized revenue next year and implementing "brutal" changes to their Terms of Service. Discussions in Nous Research AI Discord cover topics such as document recall limits from gigabytes of data, RNN memory and compute trade-offs, synthetic datasets, and benchmarking of models like WizardCoder-33B-V1.1, MobileLLaMA-1.4B-Base, ShearedLLaMA, and TinyLLaMA. Other highlights include UnsLOTH optimizations for multi-GPU systems, AI rap voice models, context-extending code, and architectural innovations like applying Detectron/ViT backbones to LLMs, sliding window attention in Mistral, and parallelizing Mixtral 8x7b with FSDP and HF Accelerate.
12/13/2023 SOLAR10.7B upstages Mistral7B?
solar-10.7b llama-2 mistral-7b phi-2 gpt-4 gemini upstage nous-research openai mistral-ai microsoft depth-up-scaling pretraining synthetic-data gpu-training api-usage model-integration agi asi chat-models vision model-performance fine-tuning
Upstage released the SOLAR-10.7B model, which uses a novel Depth Up-Scaling technique built on the llama-2 architecture and integrates mistral-7b weights, followed by continued pre-training. The Nous community finds it promising but not exceptional. Additionally, weights for the phi-2 base model were released, trained on 1.4 trillion tokens including synthetic texts created by GPT-3 and filtered by GPT-4, using 96 A100 GPUs over 14 days. On OpenAI's Discord, users discussed challenges with various GPT models, including incoherent outputs, API usage limitations, and issues with GPT-4 Vision API. Conversations also covered understanding AGI and ASI, concerns about OpenAI's partnership with Axel Springer, and pricing changes for GPT Plus. Discussions included the Gemini chat model integrated into Bard and comparisons with GPT-4 performance.