All tags
Model: "gpt-4o"
OpenAI releases Deep Research API (o3/o4-mini)
o3-deep-research o4-mini-deep-research gemma-3n flux-1-kontext-dev gpt-4o alphagenome openai google black-forest-labs deepmind sakana-ai higgsfield-ai huggingface ollama multimodality model-releases agentic-ai reinforcement-learning instruction-following model-architecture model-optimization image-generation biological-ai multi-agent-systems model-integration demishassabis hardmaru osanseviero clementdelangue
OpenAI has launched the Deep Research API featuring powerful models o3-deep-research and o4-mini-deep-research with native support for MCP, Search, and Code Interpreter, enabling advanced agent capabilities including multi-agent setups. Google released Gemma 3n, a multimodal model optimized for edge devices with only 3GB RAM, achieving a top score of 1300 on LMSys Arena, featuring the new MatFormer architecture and broad ecosystem integration. Black Forest Labs introduced FLUX.1 Kontext [dev], a 12B parameter rectified flow transformer for instruction-based image editing, comparable to GPT-4o. DeepMind unveiled AlphaGenome, an AI model capable of reading 1 million DNA bases for gene function prediction, marking a breakthrough in AI biology. Sakana AI presented Reinforcement-Learned Teachers (RLTs) to enhance LLM reasoning, achieving 86.1% on MiniF2F with efficient compute. Higgsfield AI released Higgsfield Soul, a high-aesthetic photo model with 50+ presets for fashion-grade realism. Additionally, Google launched the Gemini CLI, an open-source AI agent for terminal use with free Gemini 2.5 Pro requests.
Not much happened today
mistral-small-3.2 magenta-realtime afm-4.5b llama-3 openthinker3-7b deepseek-r1-distill-qwen-7b storm qwen2-vl gpt-4o dino-v2 sakana-ai mistral-ai google arcee-ai deepseek-ai openai amazon gdm reinforcement-learning chain-of-thought fine-tuning function-calling quantization music-generation foundation-models reasoning text-video model-compression image-classification evaluation-metrics sama
Sakana AI released Reinforcement-Learned Teachers (RLTs), a novel technique using smaller 7B parameter models trained via reinforcement learning to teach reasoning through step-by-step explanations, accelerating Chain-of-Thought learning. Mistral AI updated Mistral Small 3.2 improving instruction following and function calling with experimental FP8 quantization. Google Magenta RealTime, an 800M parameter open-weights model for real-time music generation, was released. Arcee AI launched AFM-4.5B, a sub-10B parameter foundation model extended from Llama 3. OpenThinker3-7B was introduced as a new state-of-the-art 7B reasoning model with a 33% improvement over DeepSeek-R1-Distill-Qwen-7B. The STORM text-video model compresses video input by 8x using Mamba layers and outperforms GPT-4o on MVBench with 70.6%. Discussions on reinforcement learning algorithms PPO vs. GRPO and insights on DINOv2's performance on ImageNet-1k were also highlighted. "A very quiet day" in AI news with valuable workshops from OpenAI, Amazon, and GDM.
minor ai followups: MultiAgents, Meta-SSI-Scale, Karpathy, AI Engineer
gpt-4o afm-4.5b gemma qwen stt-1b-en_fr stt-2.6b-en hunyuan-3d-2.1 openai meta-ai-fair scale-ai huggingface tencent arcee-ai ai-safety alignment ai-regulation memory-optimization scalable-oversight speech-recognition 3d-generation foundation-models sama polynoamial neelnanda5 teortaxestex yoshua_bengio zachtratar ryanpgreenblatt reach_vb arankomatsuzaki code_star
OpenAI released a paper revealing how training models like GPT-4o on insecure code can cause broad misalignment, drawing reactions from experts like @sama and @polynoamial. California's AI regulation efforts were highlighted by @Yoshua_Bengio emphasizing transparency and whistleblower protections. The term "context rot" was coined to describe LLM conversation degradation, with systems like Embra using CRM-like memory for robustness. Scalable oversight research aiming to improve human control over smarter AIs was discussed by @RyanPGreenblatt. New model releases include Kyutai's speech-to-text models capable of 400 real-time streams on a single H100 GPU, Tencent's Hunyuan 3D 2.1 as the first open-source production-ready PBR 3D generative model, and Arcee's AFM-4.5B foundation model family targeting enterprise use, competitive with Gemma and Qwen.
Execuhires Round 2: Scale-Meta, Lamini-AMD, and Instacart-OpenAI
o3-pro o3 o1-pro gpt-4o gpt-4.1 gpt-4.1-mini gpt-4.1-nano meta-ai-fair scale-ai lamini amd openai gemini google anthropic model-release benchmarking reasoning fine-tuning pricing model-performance direct-preference-optimization complex-problem-solving alexandr_wang sharon_zhou fidji_simo sama jack_rae markchen90 kevinweil gdb gregkamradt lechmazur wesrothmoney paul_cal imjaredz cto_junior johnowhitaker polynoamial scaling01
Meta hires Scale AI's Alexandr Wang to lead its new "Superintelligence" division following a $15 billion investment for a 49% stake in Scale. Lamini's Sharon Zhou joins AMD as VP of AI under Lisa Su, while Instacart's Fidji Simo becomes CEO of Apps at OpenAI under Sama. Meta offers over $10 million/year compensation packages to top researchers, successfully recruiting Jack Rae from Gemini. OpenAI releases o3-pro model to ChatGPT Pro users and API, outperforming o3 and setting new benchmarks like Extended NYT Connections and SnakeBench. Despite being slower than o1-pro, o3-pro excels in reasoning and complex problem-solving. OpenAI cuts o3 pricing by 80%, making it cheaper than GPT-4o and pressuring competitors like Google and Anthropic to lower prices. Users can now fine-tune the GPT-4.1 family using direct preference optimization (DPO) for subjective tasks.
not much happened today
kernelllm-8b gpt-4o deepseek-v3 mistral-medium-3 qwen3 blip3-o xgen-small anisora stable-audio-open-small alphaevolve meta-ai-fair mistral-ai qwen deepseek salesforce bilibili stability-ai google benchmarking model-performance multilinguality hardware-optimization multimodality image-generation video-generation text-to-audio model-parallelism chain-of-thought instruction-following reasoning mitigation-strategies reach_vb lmarena_ai theadimeline adcock_brett jxmnop dair_ai omarsar0
Meta released KernelLLM 8B, outperforming GPT-4o and DeepSeek V3 on KernelBench-Triton Level 1. Mistral Medium 3 debuted strongly in multiple benchmarks. Qwen3 models introduced a unified framework with multilingual support. DeepSeek-V3 features hardware-aware co-design. BLIP3-o family released for multimodal tasks using diffusion transformers. Salesforce launched xGen-Small models excelling in long-context and math benchmarks. Bilibili released AniSORA for anime video generation. Stability AI open-sourced Stable Audio Open Small optimized for Arm devices. Google’s AlphaEvolve coding agent improved Strassen's algorithm for the first time since 1969. Research shows chain-of-thought reasoning can harm instruction-following ability, with mitigation strategies like classifier-selective reasoning being most effective, but reasoning techniques show high variance and limited generalization. "Chain-of-thought (CoT) reasoning can harm a model’s ability to follow instructions" and "Mitigation strategies such as few-shot in-context learning, self-reflection, self-selective reasoning, and classifier-selective reasoning can counteract reasoning-induced failures".
gpt-image-1 - ChatGPT's imagegen model, confusingly NOT 4o, now available in API
gpt-image-1 o3 o4-mini gpt-4.1 eagle-2.5-8b gpt-4o qwen2.5-vl-72b openai nvidia hugging-face x-ai image-generation content-moderation benchmarking long-context multimodality model-performance supercomputing virology video-understanding model-releases kevinweil lmarena_ai _philschmid willdepue arankomatsuzaki epochairesearch danhendrycks reach_vb mervenoyann _akhaliq
OpenAI officially launched the gpt-image-1 API for image generation and editing, supporting features like alpha channel transparency and a "low" content moderation policy. OpenAI's models o3 and o4-mini are leading in benchmarks for style control, math, coding, and hard prompts, with o3 ranking #1 in several categories. A new benchmark called Vending-Bench reveals performance variance in LLMs on extended tasks. GPT-4.1 ranks in the top 5 for hard prompts and math. Nvidia's Eagle 2.5-8B matches GPT-4o and Qwen2.5-VL-72B in long-video understanding. AI supercomputer performance doubles every 9 months, with xAI's Colossus costing an estimated $7 billion and the US dominating 75% of global performance. The Virology Capabilities Test shows OpenAI's o3 outperforms 94% of expert virologists. Nvidia also released the Describe Anything Model (DAM), a multimodal LLM for detailed image and video captioning, now available on Hugging Face.
not much happened today
nemotron-h nvidia-eagle-2.5 gpt-4o qwen2.5-vl-72b gemini-2.5-flash gemini-2.0-pro gemini-exp-1206 gemma-3 qwen2.5-32b deepseek-r1-zero-32b uni3c seedream-3.0 adobe-dragon kimina-prover qwen2.5-72b bitnet-b1.58-2b4t nvidia deepseek hugging-face alibaba bytedance adobe transformers model-optimization multimodality long-context reinforcement-learning torch-compile image-generation diffusion-models distributional-rewards model-efficiency model-training native-quantization sampling-techniques philschmid arankomatsuzaki osanseviero iScienceLuvr akhaliq
Nemotron-H model family introduces hybrid Mamba-Transformer models with up to 3x faster inference and variants including 8B, 56B, and a compressed 47B model. Nvidia Eagle 2.5 is a frontier VLM for long-context multimodal learning, matching GPT-4o and Qwen2.5-VL-72B on long-video understanding. Gemini 2.5 Flash shows improved dynamic thinking and cost-performance, outperforming previous Gemini versions. Gemma 3 now supports torch.compile for about 60% faster inference on consumer GPUs. SRPO using Qwen2.5-32B surpasses DeepSeek-R1-Zero-32B on benchmarks with reinforcement learning only. Alibaba's Uni3C unifies 3D-enhanced camera and human motion controls for video generation. Seedream 3.0 by ByteDance is a bilingual image generation model with high-resolution outputs up to 2K. Adobe DRAGON optimizes diffusion generative models with distributional rewards. Kimina-Prover Preview is an LLM trained with reinforcement learning from Qwen2.5-72B, achieving 80.7% pass@8192 on miniF2F. BitNet b1.58 2B4T is a native 1-bit LLM with 2B parameters trained on 4 trillion tokens, matching full-precision LLM performance with better efficiency. Antidistillation sampling counters unwanted model distillation by modifying reasoning traces from frontier models.
not much happened today; New email provider for AINews
gpt-4.1 gpt-4o gpt-4o-mini gemini-2.5-flash seaweed-7b claude embed-4 grok smol-ai resend openai google bytedance anthropic cohere x-ai email-deliverability model-releases reasoning video-generation multimodality embedding-models agentic-workflows document-processing function-calling tool-use ai-coding adcock_brett swyx jerryjliu0 alexalbert omarsar0
Smol AI is migrating its AI news email service to Resend to improve deliverability and enable new features like personalizable AI news and a "Hacker News of AI." Recent AI model updates include OpenAI's API-only GPT-4.1, Google Gemini 2.5 Flash reasoning model, ByteDance Seaweed 7B-param video AI, Anthropic Claude's values system, Cohere Embed 4 multimodal embedding model, and xAI Grok updates with Memory and Studio features. Discussions also cover agentic workflows for document automation and AI coding patterns.
SOTA Video Gen: Veo 2 and Kling 2 are GA for developers
veo-2 gemini gpt-4.1 gpt-4o gpt-4.5-preview gpt-4.1-mini gpt-4.1-nano google openai video-generation api coding instruction-following context-window performance benchmarks model-deprecation kevinweil stevenheidel aidan_clark_
Google's Veo 2 video generation model is now available in the Gemini API with a cost of 35 cents per second of generated video, marking a significant step in accessible video generation. Meanwhile, China's Kling 2 model launched with pricing around $2 for a 10-second clip and a minimum subscription of $700 per month for 3 months, generating excitement despite some skill challenges. OpenAI announced the GPT-4.1 family release, including GPT-4.1, GPT-4.1 mini, and GPT-4.1 nano, highlighting improvements in coding, instruction following, and a 1 million token context window. The GPT-4.1 models are 26% cheaper than GPT-4o and will replace the GPT-4.5 Preview API version by July 14. Performance benchmarks show GPT-4.1 achieving 54-55% on SWE-bench verified and a 60% improvement over GPT-4o in some internal tests, though some critiques note it underperforms compared to other models like OpenRouter and DeepSeekV3 in coding tasks. The release is API-only, with a prompting guide provided for developers.
GPT 4.1: The New OpenAI Workhorse
gpt-4.1 gpt-4.1-mini gpt-4.1-nano gpt-4o gemini-2.5-pro openai llama-index perplexity-ai google-deepmind coding instruction-following long-context benchmarks model-pricing model-integration model-deprecation sama kevinweil omarsar0 aidan_mclau danhendrycks polynoamial scaling01 aravsrinivas lmarena_ai
OpenAI released GPT-4.1, including GPT-4.1 mini and GPT-4.1 nano, highlighting improvements in coding, instruction following, and handling long contexts up to 1 million tokens. The model achieves a 54 score on SWE-bench verified and shows a 60% improvement over GPT-4o on internal benchmarks. Pricing for GPT-4.1 nano is notably low at $0.10/1M input and $0.40/1M output. GPT-4.5 Preview is being deprecated in favor of GPT-4.1. Integration support includes Llama Index with day 0 support. Some negative feedback was noted for GPT-4.1 nano. Additionally, Perplexity's Sonar API ties with Gemini-2.5 Pro for the top spot in the LM Search Arena leaderboard. New benchmarks like MRCR and GraphWalks were introduced alongside updated prompting guides and cookbooks.
Google's Agent2Agent Protocol (A2A)
kimi-vl-a3b gpt-4o llama-4-scout llama-4-maverick llama-4-behemoth deepcoder-14b o3-mini o1 llama-3.1-nemotron-ultra-253b deepseek-r1 google google-deepmind moonshot-ai meta-ai-fair uc-berkeley openai nvidia hugging-face togethercompute deepseek agent-interoperability multimodality vision math reinforcement-learning coding model-training open-source model-benchmarking context-windows streaming push-notifications enterprise-authentication model-release reach_vb _akhaliq epochairesearch artificialanlys winglian danielhanchen yuchenj_uw jeremyphoward
Google Cloud Next announcements featured the launch of Google and DeepMind's full MCP support and a new Agent to Agent protocol designed for agent interoperability with multiple partners. The protocol includes components like the Agent Card, Task communication channels, Enterprise Auth and Observability, and Streaming and Push Notification support. On the model front, Moonshot AI released Kimi-VL-A3B, a multimodal model with 128K context and strong vision and math benchmark performance, outperforming gpt-4o. Meta AI introduced smaller versions of llama-4 family models: llama-4-scout and llama-4-maverick, with a larger Behemoth model still in training. DeepCoder 14B from UC Berkeley is an open-source coding model rivaling openai's o3-mini and o1 models, trained with reinforcement learning on 24K coding problems. Nvidia released llama-3.1-nemotron-ultra-253b on Hugging Face, noted for beating llama-4-behemoth and maverick and competing with deepseek-r1.
DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level
deepcoder-14b o3-mini o1 gemini-2.5-pro kimi-vl-a3b gpt-4o llama-4-scout maverick behemoth gen-4-turbo imagen-3 together-ai agentica opena bytedance google-deepmind moonshot-ai meta-ai-fair runway open-source reinforcement-learning code-generation multimodality model-training mixture-of-experts l2-normalization image-generation model-performance context-windows philschmid lepikhin reach_vb akhaliq yuchenj_uw epochairesearch danielhanchen c_valenzuelab
Together AI and Agentica released DeepCoder-14B, an open-source 14B parameter coding model rivaling OpenAI's o3-mini and o1 on coding benchmarks, trained with an open-source RL framework from ByteDance and costing about $26,880. Google DeepMind launched Gemini 2.5 Pro with experimental "Flash" versions available to subscribers. Moonshot AI introduced Kimi-VL-A3B, a multimodal model with 128K context outperforming gpt-4o on vision and math benchmarks. Meta AI released Llama 4 Scout and Maverick, with a larger Behemoth model in training, featuring mixture-of-experts and L2 norm techniques. Runway launched Gen-4 Turbo with 10x better results than Gen-3 at the same cost. Google announced Imagen 3, a high-quality text-to-image model now in Vertex AI, enabling easier object removal. The report highlights open-source contributions, reinforcement learning training optimizations, and significant model performance improvements across coding, multimodal, and image generation domains.
not much happened today
gpt-4o deepseek-v3 claude-3.7-sonnet o3-mini gemini-2.5-pro openai deepseek anthropic google-deepmind togethercompute hypertecgroup coreweave cursor-ai windsurf-ai coding instruction-following image-generation policy-compliance long-context audio-processing video-processing gpu-clusters ai-infrastructure api-access sama kevinweil joannejang nrehiew_ giffmana _philschmid scaling01 saranormous
GPT-4o was praised for its improved coding, instruction following, and freedom, becoming the leading non-reasoning coding model surpassing DeepSeek V3 and Claude 3.7 Sonnet in coding benchmarks, though it still lags behind reasoning models like o3-mini. Concerns about policy compliance in image generation were noted, with efforts to improve adherence. Gemini 2.5 Pro was highlighted for its advanced audio and video understanding, long context capabilities, and integration with platforms like Cursor AI and Windsurf AI. AI infrastructure developments include a partnership between Together AI and Hypertec Group to deliver large-scale GPU clusters, and CoreWeave's IPO was celebrated for advancing AI infrastructure. GPU and TPU usage is expected to increase significantly. "GPT-4o's transparency and background generation feature" and "Gemini 2.5 Pro scored above 50% on Simple-Bench AI Explanation" were key highlights.
not much happened today
gpt-4o deepseek-v3-0324 gemini-2.5-pro gemini-3 claude-3.7-sonnet openai hugging-face sambanova google-cloud instruction-following image-generation content-filtering model-performance api coding model-deployment benchmarking model-release abacaj nrehiew_ sama joannejang giffmana lmarena_ai _philschmid
OpenAI announced the new GPT-4o model with enhanced instruction-following, complex problem-solving, and native image generation capabilities. The model shows improved performance in math, coding, and creativity, with features like transparent background image generation. Discussions around content filtering and policy for image generation emphasize balancing creative freedom and harm prevention. DeepSeek V3-0324 APIs, available on Hugging Face and powered by SambaNovaAI, outperform benchmarks and models like Gemini 2.0 Pro and Claude 3.7 Sonnet. Gemini 2.5 Pro is recommended for coding, and Gemini 3 can be deployed easily on Google Cloud Vertex AI via the new Model Garden SDK. The Gemma 3 Technical Report has been released on arXiv.
Gemini 2.5 Pro + 4o Native Image Gen
gemini-2.5-pro gpt-4o google-deepmind openai lmarena_ai autoregressive-models multimodality reasoning coding instruction-following model-release leaderboards noam-shazeer allan-jabri gabe-goh
Gemini 2.5 Pro from Google DeepMind has become the new top AI model, surpassing Grok 3 by 40 LMarena points, with contributions from Noam Shazeer integrating Flash Thinking techniques. It is available as a free, rate-limited experimental model. Meanwhile, OpenAI released GPT 4o Native Images, an autoregressive image generation model with detailed insights shared by Allan Jabri and credits to Gabe Goh. Gemini 2.5 Pro excels in reasoning, coding, STEM, multimodal tasks, and instruction following, topping the LMarena leaderboard significantly. It is accessible via Google AI Studio and the Gemini App.
not much happened today
gpt-4.5 claude-3.7-sonnet deepseek-r1 smolagents-codeagent gpt-4o llama-3-8b tinyr1-32b-preview r1-searcher forgetting-transformer nanomoe openai deepseek hugging-face mixture-of-experts reinforcement-learning kv-cache-compression agentic-ai model-distillation attention-mechanisms model-compression minimax model-pretraining andrej-karpathy cwolferesearch aymericroucher teortaxestex jonathanross321 akhaliq
The AI news recap highlights several key developments: nanoMoE, a PyTorch implementation of a mid-sized Mixture-of-Experts (MoE) model inspired by Andrej Karpathy's nanoGPT, enables pretraining on commodity hardware within a week. An agentic leaderboard ranks LLMs powering smolagents CodeAgent, with GPT-4.5 leading, followed by Claude-3.7-Sonnet. Discussions around DeepSeek-R1 emphasize AI model commoditization, with DeepSeek dubbed the "OpenAI of China." Q-Filters offer a training-free method for KV cache compression in autoregressive models, achieving 32x compression with minimal perplexity loss. The PokéChamp minimax language agent, powered by GPT-4o and Llama-3-8b, demonstrates strong performance in Pokémon battles. Other notable models include TinyR1-32B-Preview with Branch-Merge Distillation, R1-Searcher incentivizing search capability via reinforcement learning, and the Forgetting Transformer using a Forget Gate in softmax attention. These advancements reflect ongoing innovation in model architectures, compression, reinforcement learning, and agentic AI.
not much happened today
jamba-1.6 mistral-ocr qwq-32b o1 o3-mini instella llama-3-2-3b gemma-2-2b qwen-2-5-3b babel-9b babel-83b gpt-4o claude-3-7-sonnet ai21-labs mistral-ai alibaba openai amd anthropic hugging-face multimodality ocr multilinguality structured-output on-prem-deployment reasoning benchmarking api open-source model-training gpu-optimization prompt-engineering function-calling
AI21 Labs launched Jamba 1.6, touted as the best open model for private enterprise deployment, outperforming Cohere, Mistral, and Llama on benchmarks like Arena Hard. Mistral AI released a state-of-the-art multimodal OCR model with multilingual and structured output capabilities, available for on-prem deployment. Alibaba Qwen introduced QwQ-32B, an open-weight reasoning model with 32B parameters and cost-effective usage, showing competitive benchmark scores. OpenAI released o1 and o3-mini models with advanced API features including streaming and function calling. AMD unveiled Instella, open-source 3B parameter language models trained on AMD Instinct MI300X GPUs, competing with Llama-3.2-3B and others. Alibaba also released Babel, open multilingual LLMs performing comparably to GPT-4o. Anthropic launched Claude 3.7 Sonnet, enhancing reasoning and prompt engineering capabilities.
not much happened today
gpt-4.5 gpt-4 gpt-4o o1 claude-3.5-sonnet claude-3.7 claude-3-opus deepseek-v3 grok-3 openai anthropic perplexity-ai deepseek scaling01 model-performance humor emotional-intelligence model-comparison pricing context-windows model-size user-experience andrej-karpathy jeremyphoward abacaj stevenheidel yuchenj_uw aravsrinivas dylan522p random_walker
GPT-4.5 sparked mixed reactions on Twitter, with @karpathy noting users preferred GPT-4 in a poll despite his personal favor for GPT-4.5's creativity and humor. Critics like @abacaj highlighted GPT-4.5's slowness and questioned its practical value and pricing compared to other models. Performance-wise, GPT-4.5 ranks above GPT-4o but below o1 and Claude 3.5 Sonnet, with Claude 3.7 outperforming it on many tasks yet GPT-4.5 praised for its humor and "vibes." Speculation about GPT-4.5's size suggests around 5 trillion parameters. Discussions also touched on pricing disparities, with Perplexity Deep Research at $20/month versus ChatGPT at $200/month. The emotional intelligence and humor of models like Claude 3.7 were also noted.
lots of small launches
gpt-4o claude-3.7-sonnet claude-3.7 claude-3.5-sonnet deepseek-r1 deepseek-v3 grok-3 openai anthropic amazon cloudflare perplexity-ai deepseek-ai togethercompute elevenlabs elicitorg inceptionailabs mistral-ai voice model-releases cuda gpu-optimization inference open-source api model-performance token-efficiency context-windows cuda jit-compilation lmarena_ai alexalbert__ aravsrinivas reach_vb
GPT-4o Advanced Voice Preview is now available for free ChatGPT users with enhanced daily limits for Plus and Pro users. Claude 3.7 Sonnet has achieved the top rank in WebDev Arena with improved token efficiency. DeepSeek-R1 with 671B parameters benefits from the Together Inference platform optimizing NVIDIA Blackwell GPU usage, alongside the open-source DeepGEMM CUDA library delivering up to 2.7x speedups on Hopper GPUs. Perplexity launched a new Voice Mode and a Deep Research API. The upcoming Grok 3 API will support a 1M token context window. Several companies including Elicit, Amazon, Anthropic, Cloudflare, FLORA, Elevenlabs, and Inception Labs announced new funding rounds, product launches, and model releases.
not much happened today
claude-3.7-sonnet claude-3.7 deepseek-r1 o3-mini deepseek-v3 gemini-2.0-pro gpt-4o qwen2.5-coder-32b-instruct anthropic perplexity-ai amazon google-cloud deepseek_ai coding reasoning model-benchmarking agentic-workflows context-window model-performance open-source moe model-training communication-libraries fp8 nvlink rdma cli-tools skirano omarsar0 reach_vb artificialanlys terryyuezhuo _akhaliq _philschmid catherineols goodside danielhanchen
Claude 3.7 Sonnet demonstrates exceptional coding and reasoning capabilities, outperforming models like DeepSeek R1, O3-mini, and GPT-4o on benchmarks such as SciCode and LiveCodeBench. It is available on platforms including Perplexity Pro, Anthropic, Amazon Bedrock, and Google Cloud, with pricing at $3/$15 per million tokens. Key features include a 64k token thinking mode, 200k context window, and the CLI-based coding assistant Claude Code. Meanwhile, DeepSeek released DeepEP, an open-source communication library optimized for MoE model training and inference with support for NVLink, RDMA, and FP8. These updates highlight advancements in coding AI and efficient model training infrastructure.
X.ai Grok 3 and Mira Murati's Thinking Machines
grok-3 grok-3-mini gemini-2-pro gpt-4o o3-mini-high o1 deepseek-r1 anthropic openai thinking-machines benchmarking reasoning reinforcement-learning coding multimodality safety alignment research-publishing model-performance creative-ai mira-murati lmarena_ai karpathy omarsar0 ibab arankomatsuzaki iscienceluvr scaling01
Grok 3 has launched with mixed opinions but strong benchmark performance, notably outperforming models like Gemini 2 Pro and GPT-4o. The Grok-3 mini variant shows competitive and sometimes superior capabilities, especially in reasoning and coding, with reinforcement learning playing a key role. Mira Murati has publicly shared her post-OpenAI plan, founding the frontier lab Thinking Machines, focusing on collaborative, personalizable AI, multimodality, and empirical safety and alignment research, reminiscent of Anthropic's approach.
not much happened today
zonos-v0.1 audiobox-aesthetics moshi sonar llama-3-70b gpt-4o-mini claude-3.5-haiku gpt-4o claude-3.5-sonnet deepseek-r1-distilled-qwen-1.5b reasonflux-32b o1-preview zyphra-ai meta-ai-fair kyutai-labs perplexity-ai cerebras uc-berkeley brilliant-labs google-deepmind text-to-speech speech-to-speech benchmarking model-performance reinforcement-learning math real-time-processing open-source cross-platform-integration multilinguality zero-shot-learning danhendrycks
Zyphra AI launched Zonos-v0.1, a leading open-weight text-to-speech model supporting multiple languages and zero-shot voice cloning. Meta FAIR released the open-source Audiobox Aesthetics model trained on 562 hours of audio data. Kyutai Labs introduced Moshi, a real-time speech-to-speech system with low latency. Perplexity AI announced the Sonar model based on Llama 3.3 70b, outperforming top models like GPT-4o and Claude 3.5 Sonnet with 1200 tokens/second speed, powered by Cerebras infrastructure. UC Berkeley open-sourced a 1.5B model trained with reinforcement learning that beats o1-preview on math tasks. ReasonFlux-32B achieved 91.2% on the MATH benchmark, outperforming OpenAI o1-preview. CrossPoster, an AI agent for cross-platform posting, was released using LlamaIndex workflows. Brilliant Labs integrated the Google DeepMind Gemini Live API into smart glasses for real-time translation and object identification.
o3-mini launches, OpenAI on "wrong side of history"
o3-mini o1 gpt-4o mistral-small-3-24b deepseek-r1 openai mistral-ai deepseek togethercompute fireworksai_hq ai-gradio replicate reasoning safety cost-efficiency model-performance benchmarking api open-weight-models model-releases sam-altman
OpenAI released o3-mini, a new reasoning model available for free and paid users with a "high" reasoning effort option that outperforms the earlier o1 model on STEM tasks and safety benchmarks, costing 93% less per token. Sam Altman acknowledged a shift in open source strategy and credited DeepSeek R1 for influencing assumptions. MistralAI launched Mistral Small 3 (24B), an open-weight model with competitive performance and low API costs. DeepSeek R1 is supported by Text-generation-inference v3.1.0 and available via ai-gradio and replicate. The news highlights advancements in reasoning, cost-efficiency, and safety in AI models.
Bespoke-Stratos + Sky-T1: The Vicuna+Alpaca moment for reasoning
sky-t1-32b-preview qwen-2.5-32b r1 o1-preview gpt-4o claude-3-sonnet bespoke-stratos-32b gemini-2.0-flash-thinking berkeley usc deepseek bespoke-labs google llmsys stanford lm-sys reasoning supervised-finetuning reinforcement-learning multimodality model-distillation context-windows code-execution model-repeatability behavioral-self-awareness rlhf teortaxestex cwolferesearch madiator chakraai philschmid abacaj omarsar0
Reasoning Distillation has emerged as a key technique, with Berkeley/USC researchers releasing Sky-T1-32B-Preview, a finetuned model of Qwen 2.5 32B using 17k reasoning traces for just $450, matching benchmarks of o1-preview. DeepSeek introduced R1, a model surpassing o1-preview and enabling distillation to smaller models like a 1.5B Qwen to match gpt-4o and claude-3-sonnet levels. Bespoke Labs further distilled R1 on Qwen, outperforming o1-preview with fewer samples. This progress suggests that "SFT is all you need" for reasoning without major architecture changes. Additionally, DeepSeek-R1 uses pure reinforcement learning with supervised finetuning to accelerate convergence and shows strong reasoning and multimodal capabilities. Google's Gemini 2.0 Flash Thinking model boasts a 1 million token context window, code execution, and excels in math, science, and multimodal reasoning. Critiques highlight challenges in model repeatability, behavioral self-awareness, and RLHF limitations in reasoning robustness.
not much happened today
deepseek-v3 llama-3-1-405b gpt-4o gpt-5 minimax-01 claude-3-haiku cosmos-nemotron-34b openai deep-learning-ai meta-ai-fair google-deepmind saama langchain nvidia mixture-of-experts coding math scaling visual-tokenizers diffusion-models inference-time-scaling retrieval-augmented-generation ai-export-restrictions security-vulnerabilities prompt-injection gpu-optimization fine-tuning personalized-medicine clinical-trials ai-agents persistent-memory akhaliq
DeepSeek-V3, a 671 billion parameter mixture-of-experts model, surpasses Llama 3.1 405B and GPT-4o in coding and math benchmarks. OpenAI announced the upcoming release of GPT-5 on April 27, 2023. MiniMax-01 Coder mode in ai-gradio enables building a chess game in one shot. Meta research highlights trade-offs in scaling visual tokenizers. Google DeepMind improves diffusion model quality via inference-time scaling. The RA-DIT method fine-tunes LLMs and retrievers for better RAG responses. The U.S. proposes a three-tier export restriction system on AI chips and models, excluding countries like China and Russia. Security vulnerabilities in AI chatbots involving CSRF and prompt injection were revealed. Concerns about superintelligence and weapons-grade AI models were expressed. ai-gradio updates include NVIDIA NIM compatibility and new models like cosmos-nemotron-34b. LangChain integrates with Claude-3-haiku for AI agents with persistent memory. Triton Warp specialization optimizes GPU usage for matrix multiplication. Meta's fine-tuned Llama models, OpenBioLLM-8B and OpenBioLLM-70B, target personalized medicine and clinical trials.
not much happened today
oute-tts-0.3-1b oute-tts-0.3-500m olm-1b qwen-2.5-0.5b hover gpt-4o deepseek-v3 harvey meta-ai-fair stability-ai alibaba deepseek hugging-face text-to-speech zero-shot-learning multilinguality emotion-control motor-control reinforcement-learning local-ai distributed-inference pipeline-parallelism mathematical-reasoning process-reward-models legal-ai education-ai ai-security humor reach_vb drjimfan vikhyatk mervenoyann aiatmeta iscienceluvr alibaba_qwen awnihannun ajeya_cotra emollick qtnx_ designerx
Harvey secured a new $300M funding round. OuteTTS 0.3 1B & 500M text-to-speech models were released featuring zero-shot voice cloning, multilingual support (en, jp, ko, zh, fr, de), and emotion control, powered by OLMo-1B and Qwen 2.5 0.5B. The HOVER model, a 1.5M-parameter neural net for agile motor control, was introduced, leveraging human motion capture datasets and massively parallel reinforcement learning. kokoro.js enables running AI models locally in browsers with minimal dependencies. Meta AI awarded $200K LLM evaluation grants for projects on regional language understanding, complex reasoning, and interactive programming environments. Stability AI's Twitter account was hacked, prompting security warnings. Alibaba Qwen improved Process Reward Models (PRMs) for better mathematical reasoning using a consensus filtering mechanism. DeepSeek V3 uses pipeline parallelism to enhance distributed inference and long-context generation efficiency. Discussions on AI policy in legal frameworks and AI's role in democratizing education were highlighted. Lighthearted AI-related humor was also shared.
Titans: Learning to Memorize at Test Time
minimax-01 gpt-4o claude-3.5-sonnet internlm3-8b-instruct transformer2 google meta-ai-fair openai anthropic langchain long-context mixture-of-experts self-adaptive-models prompt-injection agent-authentication diffusion-models zero-trust-architecture continuous-adaptation vision agentic-systems omarsar0 hwchase17 abacaj hardmaru rez0__ bindureddy akhaliq saranormous
Google released a new paper on "Neural Memory" integrating persistent memory directly into transformer architectures at test time, showing promising long-context utilization. MiniMax-01 by @omarsar0 features a 4 million token context window with 456B parameters and 32 experts, outperforming GPT-4o and Claude-3.5-Sonnet. InternLM3-8B-Instruct is an open-source model trained on 4 trillion tokens with state-of-the-art results. Transformer² introduces self-adaptive LLMs that dynamically adjust weights for continuous adaptation. Advances in AI security highlight the need for agent authentication, prompt injection defenses, and zero-trust architectures. Tools like Micro Diffusion enable budget-friendly diffusion model training, while LeagueGraph and Agent Recipes support open-source social media agents.
PRIME: Process Reinforcement through Implicit Rewards
claude-3.5-sonnet gpt-4o deepseek-v3 gemini-2.0 openai together-ai deepseek langchain lucidrains reinforcement-learning scaling-laws model-performance agent-architecture software-development compute-scaling multi-expert-models sama aidan_mclau omarsar0 akhaliq hwchase17 tom_doerr lmarena_ai cwolferesearch richardmcngo
Implicit Process Reward Models (PRIME) have been highlighted as a significant advancement in online reinforcement learning, trained on a 7B model with impressive results compared to gpt-4o. The approach builds on the importance of process reward models established by "Let's Verify Step By Step." Additionally, AI Twitter discussions cover topics such as proto-AGI capabilities with claude-3.5-sonnet, the role of compute scaling for Artificial Superintelligence (ASI), and model performance nuances. New AI tools like Gemini 2.0 coder mode and LangGraph Studio enhance agent architecture and software development. Industry events include the LangChain AI Agent Conference and meetups fostering AI community connections. Company updates reveal OpenAI's financial challenges with Pro subscriptions and DeepSeek-V3's integration with Together AI APIs, showcasing efficient 671B MoE parameter models. Research discussions focus on scaling laws and compute efficiency in large language models.
not much happened today
prime gpt-4o qwen-32b olmo openai qwen cerebras-systems langchain vercel swaggo gin echo reasoning chain-of-thought math coding optimization performance image-processing software-development agent-frameworks version-control security robotics hardware-optimization medical-ai financial-ai architecture akhaliq jason-wei vikhyatk awnihannun arohan tom-doerr hendrikbgr jerryjliu0 adcock-brett shuchaobi stasbekman reach-vb virattt andrew-n-carr
Olmo 2 released a detailed tech report showcasing full pre, mid, and post-training details for a frontier fully open model. PRIME, an open-source reasoning solution, achieved 26.7% pass@1, surpassing GPT-4o in benchmarks. Performance improvements include Qwen 32B (4-bit) generating at >40 tokens/sec on an M4 Max and libvips being 25x faster than Pillow for image resizing. New tools like Swaggo/swag for Swagger 2.0 documentation, Jujutsu (jj) Git-compatible VCS, and Portspoof security tool were introduced. Robotics advances include a weapon detection system with a meters-wide field of view and faster frame rates. Hardware benchmarks compared H100 and MI300x accelerators. Applications span medical error detection using PRIME and a financial AI agent integrating LangChainAI and Vercel AI SDK. Architectural insights suggest the need for breakthroughs similar to SSMs or RNNs.
DeepSeek v3: 671B finegrained MoE trained for $5.5m USD of compute on 15T tokens
deepseek-v3 gpt-4o claude-3.5-sonnet llama-3 deepseek-ai hugging-face openai anthropic mixture-of-experts model-training model-optimization reinforcement-learning chain-of-thought multi-token-prediction synthetic-data model-distillation fine-tuning attention-mechanisms gpu-optimization nrehiew_ denny_zhou
DeepSeek-V3 has launched with 671B MoE parameters and trained on 14.8T tokens, outperforming GPT-4o and Claude-3.5-sonnet in benchmarks. It was trained with only 2.788M H800 GPU hours, significantly less than Llama-3's 30.8M GPU-hours, showcasing major compute efficiency and cost reduction. The model is open-source and deployed via Hugging Face with API support. Innovations include native FP8 mixed precision training, Multi-Head Latent Attention scaling, distillation from synthetic reasoning data, pruning and healing for MoEs with up to 256 experts, and a new multi-token prediction objective enabling lookahead token planning. Research highlights also cover the OREO method and Natural Language Reinforcement Learning (NLRL) for multi-step reasoning and agent control.
not much happened today
qwen-o1 qvq claude-3.5-sonnet gpt-4o o3 o3-mini alibaba openai mit idsia llamaindex ollama vision benchmarking llm-calibration intentionality alignment-faking deliberative-alignment artificial-life gdpr-compliance contract-review-agent app-creation synthetic-data post-transformers smol-models agents bret-taylor
The Qwen team launched QVQ, a vision-enabled version of their experimental QwQ o1 clone, benchmarking comparably to Claude 3.5 Sonnet. Discussions include Bret Taylor's insights on autonomous software development distinct from the Copilot era. The Latent Space LIVE! talks cover highlights of 2024 AI startups, vision, open models, post-transformers, synthetic data, smol models, and agents. Twitter recaps by Claude 3.5 Sonnet highlight proposals for benchmarks measuring LLM calibration and falsehood confidence, with QVQ outperforming GPT-4o and Claude Sonnet 3.5. AI alignment debates focus on intentionality and critiques of alignment faking in models like Claude. Updates from OpenAI include new o3 and o3-mini models and a deliberative alignment strategy. The ASAL project is a collaboration between MIT, OpenAI, and Swiss AI Lab IDSIA to automate artificial life discovery. Personal stories reveal frustrations with USCIS green card denials despite high qualifications. New tools like GeminiCoder enable rapid app creation, and a contract review agent using Reflex and Llama Index checks GDPR compliance. Holiday greetings and memes were also shared.
o3 solves AIME, GPQA, Codeforces, makes 11 years of progress in ARC-AGI and 25% in FrontierMath
o3 o3-mini o1-mini gpt-3 gpt-4o o1 openai benchmarking math reasoning model-performance inference-speed cost-efficiency alignment safety-testing sama eric-wallace
OpenAI announced the o3 and o3-mini models with groundbreaking benchmark results, including a jump from 2% to 25% on the FrontierMath benchmark and 87.5% on the ARC-AGI reasoning benchmark, representing about 11 years of progress on the GPT3 to GPT4o scaling curve. The o1-mini model shows superior inference efficiency compared to o3-full, promising significant cost reductions on coding tasks. The announcement was accompanied by community discussions, safety testing applications, and detailed analyses. Sama highlighted the unusual cost-performance tradeoff, and Eric Wallace shared insights on the o-series deliberative alignment strategy.
Genesis: Generative Physics Engine for Robotics (o1-mini version)
o1 o1-preview gpt-4o claude-3.5-sonnet gemini-2.0-pro llama-3-3b llama-3-70b openai google-deepmind meta-ai-fair hugging-face function-calling structured-outputs vision performance-benchmarks sdk webrtc reasoning math code-generation transformer-architecture model-training humanoid-robots search model-efficiency dataset-sharing aidan_mclau sundarpichai adcock_brett
OpenAI launched the o1 model API featuring function calling, structured outputs, vision support, and developer messages, achieving 60% fewer reasoning tokens than its preview. The model excels in math and code with a 0.76 LiveBench Coding score, outperforming Sonnet 3.5. Beta SDKs for Go and Java and WebRTC support with 60% lower prices were also released. Google Gemini 2.0 Pro (Gemini Exp 1206) deployment accelerated, showing improved coding, math, and reasoning performance. Meta AI FAIR introduced research on training transformers directly on raw bytes using dynamic entropy-based patching. Commercial humanoid robots were successfully deployed by an industry player. Hugging Face researchers demonstrated that their 3B Llama model can outperform the 70B Llama model on MATH-500 accuracy using search techniques, highlighting efficiency gains with smaller models. Concerns about reproducibility and domain-specific limitations were noted.
OpenAI Voice Mode Can See Now - After Gemini Does
gemini-2.0-flash claude claude-3.5-sonnet llama-3-70b llama-3 mistral-large gpt-4o openai google-deepmind anthropic togethercompute scale-ai meta-ai-fair mistral-ai multimodality real-time-streaming roleplay prompt-handling model-comparison model-training creative-writing model-censorship code-execution developer-ecosystem ai-humor bindureddy
OpenAI launched Realtime Video shortly after Gemini, which led to less impact due to Gemini's earlier arrival with lower cost and fewer rate limits. Google DeepMind released Gemini 2.0 Flash featuring enhanced multimodal capabilities and real-time streaming. Anthropic introduced Clio, a system analyzing real-world usage of Claude models. Together Computing acquired CodeSandbox to launch a code interpreter tool. Discussions highlighted Meta's Llama 3.3-70B for its advanced roleplay and prompt handling abilities, outperforming models like Mistral Large and GPT-4o in expressiveness and censorship. The AI community also engaged in humorous takes on AI outages and model competition, with ChatGPT adding a Santa mode for holiday interactions. "Anthropic is capturing the developer ecosystem, Gemini has AI enthusiast mindshare, ChatGPT reigns over AI dabblers" was a noted observation from the community.
Meta BLT: Tokenizer-free, Byte-level LLM
byte-latent-transformer llama-3 phi-4 gpt-4o command-r7b meta-ai-fair llamaindex microsoft deepseek-ai openai cohere anthropic tokenization transformer-architecture model-efficiency benchmarking multimodality vision reinforcement-learning model-scaling jailbreaking model-optimization
Meta AI introduces the Byte Latent Transformer (BLT), a tokenizer-free architecture that dynamically forms byte patches for efficient compute allocation, outperforming Llama 3 on benchmarks including the CUTE benchmark. The model was trained on approximately 1 trillion tokens and features a three-block transformer design with local and global components. This approach challenges traditional tokenization and may enable new multimodal capabilities such as direct file interaction without retrieval-augmented generation. Additionally, Microsoft announced the Phi-4 14B parameter model achieving state-of-the-art results on STEM and reasoning benchmarks, surpassing GPT-4o. DeepSeek AI launched new vision-language models based on their MoE architecture with sizes ranging from 1.0B to 27B parameters. OpenAI released a new Projects feature for ChatGPT, and Cohere introduced their smallest and fastest Command R7B model. Anthropic published research on "Best-of-N Jailbreaking" vulnerabilities across text, vision, and audio models. Industry discussion highlights a trend of decreasing frontier LLM sizes, with GPT-4 at approximately 1.8 trillion parameters compared to newer models.
Meta Llama 3.3: 405B/Nova Pro performance at 70B price
llama-3-70b llama-3.3-70b gpt-4o gemini-exp-1206 meta-ai-fair openai google-deepmind hugging-face llamacloud reinforcement-learning fine-tuning model-performance document-processing pricing-models alignment online-rl sama steven-heidel aidan_mclau lmarena_ai oriolvinyalsml jerryjliu0
Meta AI released Llama 3.3 70B, matching the performance of the 405B model with improved efficiency using "a new alignment process and progress in online RL techniques". OpenAI announced Reinforcement Fine-Tuning (RFT) for building expert models with limited data, offering alpha access to researchers and enterprises. Google DeepMind's Gemini-Exp-1206 leads benchmarks, tying with GPT-4o in coding performance. LlamaCloud enhanced document processing with table extraction and analytics. Discussions on OpenAI's pricing plans continue in the community.
Olympus has dropped (aka, Amazon Nova Micro|Lite|Pro|Premier|Canvas|Reel)
amazon-nova claude-3 llama-3-70b gemini-1.5-flash gpt-4o amazon anthropic google-deepmind sakana-ai-labs multimodality benchmarking model-merging model-performance model-architecture model-optimization population-based-learning philschmid bindureddy
Amazon announced the Amazon Nova family of multimodal foundation models at AWS Re:Invent, available immediately with no waitlist in configurations like Micro, Lite, Pro, Canvas, and Reel, with Premier and speech-to-speech coming next year. These models offer 2-4x faster token speeds and are 25%-400% cheaper than competitors like Anthropic Claude models, positioning Nova as a serious contender in AI engineering. Pricing undercuts models such as Google DeepMind Gemini Flash 8B, and some Nova models extend context length up to 300k tokens. However, benchmarking controversy exists as some evaluations show Nova scoring below Llama-3 70B in LiveBench AI metrics. Separately, CycleQD was introduced by Sakana AI Labs, using evolutionary computation for population-based model merging to develop niche LLM agents.
Qwen with Questions: 32B open weights reasoning model nears o1 in GPQA/AIME/Math500
deepseek-r1 qwq gpt-4o claude-3.5-sonnet qwen-2.5 llama-cpp deepseek sambanova hugging-face dair-ai model-releases benchmarking fine-tuning sequential-search inference model-deployment agentic-rag external-tools multi-modal-models justin-lin clementdelangue ggerganov vikparuchuri
DeepSeek r1 leads the race for "open o1" models but has yet to release weights, while Justin Lin released QwQ, a 32B open weight model that outperforms GPT-4o and Claude 3.5 Sonnet on benchmarks. QwQ appears to be a fine-tuned version of Qwen 2.5, emphasizing sequential search and reflection for complex problem-solving. SambaNova promotes its RDUs as superior to GPUs for inference tasks, highlighting the shift from training to inference in AI systems. On Twitter, Hugging Face announced CPU deployment for llama.cpp instances, Marker v1 was released as a faster and more accurate deployment tool, and Agentic RAG developments focus on integrating external tools and advanced LLM chains for improved response accuracy. The open-source AI community sees growing momentum with models like Flux gaining popularity, reflecting a shift towards multi-modal AI models including image, video, audio, and biology.
Stripe lets Agents spend money with StripeAgentToolkit
gpt-4o gemini-exp-1114 stripe openai anthropic meta-ai-fair ai-computer-interfaces agentic-ai model-overfitting benchmarks scaling-laws agi chain-of-thought image-captioning dialogue-systems memory-efficient-fine-tuning diffusion-models mixture-of-experts adaptive-decoding creativity-optimization factuality-optimization pair-programming document-parsing retrieval-augmented-generation abacaj francois-fleuret lmarena_ai goodside jxmnop jaseweston stevenheidel
Stripe has pioneered an AI SDK specifically designed for agents that handle payments, integrating with models like gpt-4o to enable financial transactions and token-based charging. The AI developer tooling trend emphasizes better "AI-Computer Interfaces" for improved agent reliability, with tools like E2B and the
llms.txt
documentation trend gaining traction, notably adopted by Anthropic. In AI model news, Gemini-Exp-1114 topped the Vision Leaderboard and improved in Math Arena, while discussions continue around model overfitting and the limits of scaling laws for AGI. OpenAI released a ChatGPT desktop app for macOS with integrations for VS Code, Xcode, and Terminal, enhancing developer workflows and pair programming. Anthropic introduced a prompt improver using chain-of-thought reasoning, and Meta AI shared top research from EMNLP2024 on image captioning, dialogue systems, and memory-efficient fine-tuning. Highlights from ICLR 2025 include diffusion-based illumination harmonization, open mixture-of-experts language models, and hyperbolic vision-language models. A new adaptive decoding method optimizes creativity and factuality per token. Tools like LlamaParse and RAGformation were also introduced for document parsing and retrieval-augmented generation. BitNet was a lie?
qwen-2.5-coder-32b-instruct gpt-4o llama-3 sambanova alibaba hugging-face quantization scaling-laws model-efficiency fine-tuning model-performance code-generation open-source unit-testing ci-cd tanishq-kumar tim-dettmers
Scaling laws for quantization have been modified by a group led by Chris Re, analyzing over 465 pretraining runs and finding benefits plateau at FP6 precision. Lead author Tanishq Kumar highlights that longer training and more data increase sensitivity to quantization, explaining challenges with models like Llama-3. Tim Dettmers, author of QLoRA, warns that the era of efficiency gains from low-precision quantization is ending, signaling a shift from scaling to optimizing existing resources. Additionally, Alibaba announced Qwen 2.5-Coder-32B-Instruct, which matches or surpasses GPT-4o on coding benchmarks, and open-source initiatives like DeepEval for LLM testing are gaining traction.
FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI
o1 claude-3.5-haiku gpt-4o epoch-ai openai microsoft anthropic x-ai langchainai benchmarking math moravecs-paradox mixture-of-experts chain-of-thought agent-framework financial-metrics-api pdf-processing few-shot-learning code-generation karpathy philschmid adcock_brett dylan522p
Epoch AI collaborated with over 60 leading mathematicians to create the FrontierMath benchmark, a fresh set of hundreds of original math problems with easy-to-verify answers, aiming to challenge current AI models. The benchmark reveals that all tested models, including o1, perform poorly, highlighting the difficulty of complex problem-solving and Moravec's paradox in AI. Key AI developments include the introduction of Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture reducing computational costs, and improvements in Chain-of-Thought (CoT) prompting through incorrect reasoning and explanations. Industry news covers OpenAI acquiring the chat.com domain, Microsoft launching the Magentic-One agent framework, Anthropic releasing Claude 3.5 Haiku outperforming gpt-4o on some benchmarks, and xAI securing 150MW grid power with support from Elon Musk and Trump. LangChain AI introduced new tools including a Financial Metrics API, Document GPT with PDF upload and Q&A, and LangPost AI agent for LinkedIn posts. xAI also demonstrated the Grok Engineer compatible with OpenAI and Anthropic APIs for code generation.
The AI Search Wars Have Begun — SearchGPT, Gemini Grounding, and more
gpt-4o o1-preview claude-3.5-sonnet universal-2 openai google gemini nyt perplexity-ai glean nvidia langchain langgraph weights-biases cohere weaviate fine-tuning synthetic-data distillation hallucinations benchmarking speech-to-text robotics neural-networks ai-agents sam-altman alexalbert__ _jasonwei svpino drjimfan virattt
ChatGPT launched its search functionality across all platforms using a fine-tuned version of GPT-4o with synthetic data generation and distillation from o1-preview. This feature includes a Chrome extension promoted by Sam Altman but has issues with hallucinations. The launch coincides with Gemini introducing Search Grounding after delays. Notably, The New York Times is not a partner due to a lawsuit against OpenAI. The AI search competition intensifies with consumer and B2B players like Perplexity and Glean. Additionally, Claude 3.5 Sonnet achieved a new benchmark record on SWE-bench Verified, and a new hallucination evaluation benchmark, SimpleQA, was introduced. Other highlights include the Universal-2 speech-to-text model with 660M parameters and HOVER, a neural whole-body controller for humanoid robots trained in NVIDIA Isaac simulation. AI hedge fund teams using LangChain and LangGraph were also showcased. The news is sponsored by the RAG++ course featuring experts from Weights & Biases, Cohere, and Weaviate.
DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing
bitnet-b1.58 llama-3.1-nemotron-70b-instruct gpt-4o claude-3.5-sonnet uc-berkeley deepmind openai microsoft nvidia archetype-ai boston-dynamics toyota-research google adobe openai mistral tesla meta-ai-fair model-optimization on-device-ai fine-tuning large-corpus-processing gpu-acceleration frameworks model-benchmarking rohanpaul_ai adcock_brett david-patterson
UC Berkeley's EPIC lab introduces innovative LLM data operators with projects like LOTUS and DocETL, focusing on effective programming and computation over large data corpora. This approach contrasts GPU-rich big labs like Deepmind and OpenAI with GPU-poor compound AI systems. Microsoft open-sourced BitNet b1.58, a 1-bit ternary parameter LLM enabling 4-20x faster training and on-device inference at human reading speeds. Nvidia released Llama-3.1-Nemotron-70B-Instruct, a fine-tuned open-source model outperforming GPT-4o and Claude-3.5-sonnet. These developments highlight advances in model-optimization, on-device-ai, and fine-tuning.
DeepSeek Janus and Meta SpiRit-LM: Decoupled Image and Expressive Voice Omnimodality
nemotron-70b claude claude-3.5-sonnet gpt-4o deepseek meta-ai-fair wandb nvidia anthropic hugging-face perplexity-ai multimodality image-generation speech-synthesis fine-tuning model-merging benchmarking open-source model-optimization reinforcement-learning bindureddy aravsrinivas danielhanchen clementdelangue cwolferesearch
DeepSeek Janus and Meta SpiRit-LM are two notable multimodality AI models recently released, showcasing advances in image generation and speech synthesis respectively. DeepSeek Janus separates vision encoders for image understanding and generation, achieving better results in both tasks. Meta's SpiRit-LM introduces an expressive speech and writing model generating pitch and style units, improving over standard TTS. Additionally, W&B Weave offers comprehensive LLM observability and multimodality fine-tuning tools. Industry updates include Nvidia's Nemotron 70b model underperforming, Meta open-sourcing Movie Gen Bench for media generation benchmarking, Perplexity launching internal search with multi-step reasoning, and Anthropic updating Claude apps. Open source progress includes Hugging Face's gradient accumulation fix in transformers and advocacy for open source AI to prevent Big Tech dominance. "Model merging for combining skills of multiple models" is also highlighted.
not much happened today
claudette llama-3-1 yi-lightning gpt-4o claude-3.5-sonnet answer-ai tencent notebooklm motherduck perplexity dropbox openai meta-ai-fair yi-ai zyphra-ai anthropic langchain openai synthetic-data fine-tuning sql audio-processing on-device-ai dataset-release transformer llm-reasoning ai-safety code-generation ai-pricing ai-job-market fchollet aravsrinivas svpino swyx
Answer.ai launched fastdata, a synthetic data generation library using
claudette
and Tencent's Billion Persona paper. NotebookLM became customizable, and Motherduck introduced notable LLMs in SQL implementations. Perplexity and Dropbox announced competitors to Glean. OpenAI unveiled audio chat completions priced at 24 cents per minute. Meta AI released Llama 3.1, powering Lenovo AI Now's on-device agent. Yi-Lightning model ranked #6 globally, surpassing GPT-4o. Zyphra AI released the large Zyda-2 dataset with 5 trillion tokens. François Chollet clarified transformer architecture as set-processing, not sequence-processing. Research suggests memorization aids LLM reasoning. Anthropic updated its Responsible Scaling Policy for AI safety. Tools like Perplexity Finance, Open Canvas by LangChain, and AlphaCodium code generation tool were highlighted. Approximately $500 million was raised for AI agent startups, with ongoing discussions on AI's job market impact. Combining prompt caching with the Batches API can yield a 95% discount on Claude 3.5 Sonnet tokens. Did Nvidia's Nemotron 70B train on test?
nemotron-70b llama-3.1-70b llama-3.1 ministral-3b ministral-8b gpt-4o claude-3.5-sonnet claude-3.5 nvidia mistral-ai hugging-face zep benchmarking reinforcement-learning reward-models temporal-knowledge-graphs memory-layers context-windows model-releases open-source reach_vb philschmid swyx
NVIDIA's Nemotron-70B model has drawn scrutiny despite strong benchmark performances on Arena Hard, AlpacaEval, and MT-Bench, with some standard benchmarks like GPQA and MMLU Pro showing no improvement over the base Llama-3.1-70B. The new HelpSteer2-Preference dataset improves some benchmarks with minimal losses elsewhere. Meanwhile, Mistral released Ministral 3B and 8B models featuring 128k context length and outperforming Llama-3.1 and GPT-4o on various benchmarks under the Mistral Commercial License. NVIDIA's Nemotron 70B also surpasses GPT-4o and Claude-3.5-Sonnet on key benchmarks using RLHF (REINFORCE) training. Additionally, Zep introduced Graphiti, an open-source temporal knowledge graph memory layer for AI agents, built on Neo4j.
Canvas: OpenAI's answer to Claude Artifacts
gpt-4o claude-artifacts openai cursor_ai daily inline-suggestions collaborative-editing code-editing model-training model-integration feature-detection accuracy-evaluation voice-ai hackathon open-source-libraries marijn-haverbeke karina-nguyen vicente-silveira swyx
OpenAI released Canvas, an enhanced writing and coding tool based on GPT-4o, featuring inline suggestions, seamless editing, and a collaborative environment. Early feedback compares it to Cursor and Claude Artifacts, noting strengths and some execution issues. OpenAI also sponsors Marijn Haverbeke, creator of ProseMirror and CodeMirror, which are used in Canvas. The integration involved training a detector to trigger Canvas appropriately, achieving 83% accuracy in correct triggers. Unlike Claude Artifacts, Canvas currently lacks Mermaid Diagrams and HTML preview support. Additionally, Daily is sponsoring a $20,000 voice AI hackathon in San Francisco, highlighting voice AI as a key emerging skill.
OpenAI Realtime API and other Dev Day Goodies
gpt-4o-realtime-preview gpt-4o openai livekit agora twilio grab automat voice-activity-detection function-calling ephemeral-sessions auto-truncation vision-fine-tuning model-distillation prompt-caching audio-processing
OpenAI launched the gpt-4o-realtime-preview Realtime API featuring text and audio token processing with pricing details and future plans including vision and video support. The API supports voice activity detection modes, function calling, and ephemeral sessions with auto-truncation for context limits. Partnerships with LiveKit, Agora, and Twilio enhance audio components and AI virtual agent voice calls. Additionally, OpenAI introduced vision fine-tuning with only 100 examples improving mapping accuracy for Grab and RPA success for Automat. Model distillation and prompt caching features were also announced, including free eval inference for users opting to share data.
not much happened today
o1-preview o1-mini qwen-2.5 gpt-4o deepseek-v2.5 gpt-4-turbo-2024-04-09 grin llama-3-1-405b veo kat openai qwen deepseek-ai microsoft kyutai-labs perplexity-ai together-ai meta-ai-fair google-deepmind hugging-face google anthropic benchmarking math coding instruction-following model-merging model-expressiveness moe voice voice-models generative-video competition open-source model-deployment ai-agents hyung-won-chung noam-brown bindureddy akhaliq karpathy aravsrinivas fchollet cwolferesearch philschmid labenz ylecun
OpenAI's o1-preview and o1-mini models lead benchmarks in Math, Hard Prompts, and Coding. Qwen 2.5 72B model shows strong performance close to GPT-4o. DeepSeek-V2.5 tops Chinese LLMs, rivaling GPT-4-Turbo-2024-04-09. Microsoft's GRIN MoE achieves good results with 6.6B active parameters. Moshi voice model from Kyutai Labs runs locally on Apple Silicon Macs. Perplexity app introduces voice mode with push-to-talk. LlamaCoder by Together.ai uses Llama 3.1 405B for app generation. Google DeepMind's Veo is a new generative video model for YouTube Shorts. The 2024 ARC-AGI competition increases prize money and plans a university tour. A survey on model merging covers 50+ papers for LLM alignment. The Kolmogorov–Arnold Transformer (KAT) paper proposes replacing MLP layers with KAN layers for better expressiveness. Hugging Face Hub integrates with Google Cloud Vertex AI Model Garden for easier open-source model deployment. Agent.ai is introduced as a professional network for AI agents. "Touching grass is all you need."
Learnings from o1 AMA
o1-preview o1-mini claude-3.5-sonnet gpt-4o openai weights-biases cohere weaviate reinforcement-learning chain-of-thought reasoning model-performance prompting code-editing rag hybrid-search sama rohanpaul_ai gdb andrew-mayne
OpenAI released the o1 model series, touted as their "most capable and aligned models yet," trained with reinforcement learning to enhance reasoning. The o1-preview model scored 21% on ARC-AGI, ~80% on aider code editing (surpassing Claude 3.5 Sonnet's 77%), and ~52% on Cognition-Golden, showcasing a shift from memorizing answers to memorizing reasoning. The model employs a unique chain-of-thought approach enabling "System II thinking" for better problem-solving. Experts like Andrew Mayne advise framing o1 as a smart friend providing thoughtful explanations. Additionally, an advanced RAG course sponsored by Weights & Biases, Cohere, and Weaviate offers strategies for hybrid search and prompting to optimize AI solutions.
o1: OpenAI's new general reasoning models
o1 o1-preview o1-mini gpt-4o llama openai nvidia test-time-reasoning reasoning-tokens token-limit competitive-programming benchmarking scaling-laws ai-chip-competition inference training model-performance jason-wei jim-fan
OpenAI has released the o1 model family, including o1-preview and o1-mini, focusing on test-time reasoning with extended output token limits over 30k tokens. The models show strong performance, ranking in the 89th percentile on competitive programming, excelling in USA Math Olympiad qualifiers, and surpassing PhD-level accuracy on physics, biology, and chemistry benchmarks. Notably, o1-mini performs impressively despite its smaller size compared to gpt-4o. The release highlights new scaling laws for test-time compute that scale loglinearly. Additionally, Nvidia is reportedly losing AI chip market share to startups, with a shift in developer preference from CUDA to llama models for web development, though Nvidia remains dominant in training. This news reflects significant advances in reasoning-focused models and shifts in AI hardware competition.
not much happened today
gpt-4o claude-3.5-sonnet phi-3.5-mini phi-3.5-moe phi-3.5-vision llama-3-1-405b qwen2-math-72b openai anthropic microsoft meta-ai-fair hugging-face langchain box fine-tuning benchmarking model-comparison model-performance diffusion-models reinforcement-learning zero-shot-learning math model-efficiency ai-regulation ai-safety ai-engineering prompt-engineering swyx ylecun
OpenAI launched GPT-4o finetuning with a case study on Cosine. Anthropic released Claude 3.5 Sonnet with 8k token output. Microsoft Phi team introduced Phi-3.5 in three variants: Mini (3.8B), MoE (16x3.8B), and Vision (4.2B), noted for sample efficiency. Meta released Llama 3.1 405B, deployable on Google Cloud Vertex AI, offering GPT-4 level capabilities. Qwen2-Math-72B achieved state-of-the-art math benchmark performance with a Gradio demo. Discussions included model comparisons like ViT vs CNN and Mamba architecture. Tools updates featured DSPy roadmap, Flux Schnell improving diffusion speed on M1 Max, and LangChain community events. Research highlights zero-shot DUP prompting for math reasoning and fine-tuning best practices. AI ethics covered California's AI Safety Bill SB 1047 and regulatory concerns from Yann LeCun. Commentary on AI engineer roles by Swyx. "Chat with PDF" feature now available for Box Enterprise Plus users.
Grok 2! and ChatGPT-4o-latest confuses everybody
gpt-4o grok-2 claude-3.5-sonnet flux-1 stable-diffusion-3 gemini-advanced openai x-ai black-forest-labs google-deepmind benchmarking model-performance tokenization security-vulnerabilities multi-agent-systems research-automation text-to-image conversational-ai model-integration ylecun rohanpaul_ai karpathy
OpenAI quietly released a new GPT-4o model in ChatGPT, distinct from the API version, reclaiming the #1 spot on Lmsys arena benchmarks across multiple categories including math, coding, and instruction-following. Meanwhile, X.ai launched Grok 2, outperforming Claude 3.5 Sonnet and previous GPT-4o versions, with plans for enterprise API release. Grok 2 integrates Black Forest Labs' Flux.1, an open-source text-to-image model surpassing Stable Diffusion 3. Google DeepMind announced Gemini Advanced with enhanced conversational features and Pixel device integration. AI researcher ylecun highlighted LLM limitations in learning and creativity, while rohanpaul_ai discussed an AI Scientist system generating publishable ML research at low cost. karpathy warned of security risks in LLM tokenizers akin to SQL injection.
not much happened today
qwen2-math-72b gpt-4o claude-3.5-sonnet gemini-1.5-pro llama-3.1-405b idefics3-llama-8b anthropic google mistral-ai llamaindex math fine-tuning synthetic-data reinforcement-learning bug-bounty visual-question-answering open-source retrieval-augmented-generation agentic-ai ai-safety policy rohanpaul_ai anthropicai mervenoyann jeremyphoward omarsar0 ylecun bindureddy
Qwen2-Math-72B outperforms GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, and Llama-3.1-405B on math benchmarks using synthetic data and advanced optimization techniques. Google AI cuts pricing for Gemini 1.5 Flash by up to 78%. Anthropic expands its bug bounty program targeting universal jailbreaks in next-gen safety systems. Tutorial on QLoRA fine-tuning of IDEFICS3-Llama 8B for visual question answering released. A Chinese open weights model surpasses previous MATH benchmark records. Surveys on Mamba models and LLM-based agents for software engineering highlight advancements and applications. Open-source tools like R2R RAG engine and LlamaIndex Workflows simplify building complex AI applications. Mistral AI introduces customizable AI agents. Concerns raised about California bill SB 1047's focus on existential risk and debates on banning open-source AI. Memes and humor continue in AI communities.
Too Cheap To Meter: AI prices cut 50-70% in last 30 days
gpt-4o gpt-4o-mini llama-3-1-405b mistral-large-2 gemini-1.5-flash deepseek-v2 sonnet-3.5 exaone-3.0 minicpm-v-2.6 claude-3.5 gpt-4o-2024-08-06 llamaindex together-ai deepinfra deepseek-ai mistral-ai google-deepmind lg-ai-research llamaindex llamaindex llamaindex price-cuts context-caching instruction-tuning vision benchmarks pytorch attention-mechanisms reinforcement-learning-from-human-feedback compute-optimal-scaling rohanpaul_ai akhaliq mervenoyann sophiamyang chhillee karpathy
Gemini 1.5 Flash has cut prices by approximately 70%, offering a highly competitive free tier of 1 million tokens per minute at $0.075/mtok, intensifying the AI model price war. Other significant price reductions include GPT-4o (~50% cut to $2.50/mtok), GPT-4o mini (70-98.5% cut to $0.15/mtok), Llama 3.1 405b (46% cut to $2.7/mtok), and Mistral Large 2 (62% cut to $3/mtok). Deepseek v2 introduced context caching, reducing input token costs by up to 90% to $0.014/mtok. New model releases include Llama 3.1 405b, Sonnet 3.5, EXAONE-3.0 (7.8B instruction-tuned by LG AI Research), and MiniCPM V 2.6 (vision-language model combining SigLIP 400M and Qwen2-7B). Benchmarks show Mistral Large performing well on ZebraLogic and Claude-3.5 leading LiveBench. FlexAttention, a new PyTorch API, simplifies and optimizes attention mechanisms. Andrej Karpathy analyzed RLHF, highlighting its limitations compared to traditional reinforcement learning. Google DeepMind research on compute-optimal scaling was also summarized.
GPT4o August + 100% Structured Outputs for All (GPT4o August edition)
gpt-4o-2024-08-06 llama-3-1-405b llama-3 claude-3.5-sonnet gemini-1.5-pro gpt-4o yi-large-turbo openai meta-ai-fair google-deepmind yi-large nvidia groq langchain jamai langsmith structured-output context-windows model-pricing benchmarking parameter-efficient-expert-retrieval retrieval-augmented-generation mixture-of-experts model-performance ai-hardware model-deployment filtering multi-lingual vision john-carmack jonathan-ross rohanpaul_ai
OpenAI released the new gpt-4o-2024-08-06 model with 16k context window and 33-50% lower pricing than the previous 4o-May version, featuring a new Structured Output API that improves output quality and reduces retry costs. Meta AI launched Llama 3.1, a 405-billion parameter model surpassing GPT-4 and Claude 3.5 Sonnet on benchmarks, alongside expanding the Llama Impact Grant program. Google DeepMind quietly released Gemini 1.5 Pro, outperforming GPT-4o, Claude-3.5, and Llama 3.1 on LMSYS benchmarks and leading the Vision Leaderboard. Yi-Large Turbo was introduced as a cost-effective upgrade priced at $0.19 per million tokens. In hardware, NVIDIA H100 GPUs were highlighted by John Carmack for their massive AI workload power, and Groq announced plans to deploy 108,000 LPUs by Q1 2025. New AI tools and techniques include RAG (Retrieval-Augmented Generation), the JamAI Base platform for Mixture of Agents systems, and LangSmith's enhanced filtering capabilities. Google DeepMind also introduced PEER (Parameter Efficient Expert Retrieval) architecture.
Execuhires: Tempting The Wrath of Khan
gemini-1.5-pro gpt-4o claude-3.5 flux-1 llama-3-1-405b character.ai google adept amazon inflection microsoft stability-ai black-forest-labs schelling google-deepmind openai anthropic meta-ai-fair lmsys langchainai execuhire model-benchmarking multilinguality math coding text-to-image agent-ide open-source-models post-training data-driven-performance noam-shazeer mostafa-mostaque david-friedman rob-rombach alexandr-wang svpino rohanpaul_ai
Character.ai's $2.5b execuhire to Google marks a significant leadership move alongside Adept's $429m execuhire to Amazon and Inflection's $650m execuhire to Microsoft. Despite strong user growth and content momentum, Character.ai's CEO Noam Shazeer returns to Google, signaling shifting vibes in the AI industry. Google DeepMind's Gemini 1.5 Pro tops Chatbot Arena benchmarks, outperforming GPT-4o and Claude-3.5, excelling in multilingual, math, and coding tasks. The launch of Black Forest Labs' FLUX.1 text-to-image model and LangGraph Studio agent IDE highlight ongoing innovation. Llama 3.1 405B is released as the largest open-source model, fostering developer use and competition with closed models. The industry is focusing increasingly on post-training and data as key competitive factors, raising questions about acquisition practices and regulatory scrutiny.
Mistral Large 2 + RIP Mistral 7B, 8x7B, 8x22B
mistral-large-2 mistral-nemo-12b llama-3.1-8b llama-3.1-70b llama-3.1 llama-3-405b yi-34b-200k gpt-4o mistral-ai meta-ai-fair groq togethercompute code-generation math function-calling reasoning context-windows model-deprecation pretraining posttraining benchmarking
Mistral Large 2 introduces 123B parameters with Open Weights under a Research License, focusing on code generation, math performance, and a massive 128k context window, improving over Mistral Large 1's 32k context. It claims better function calling capabilities than GPT-4o and enhanced reasoning. Meanwhile, Meta officially released Llama-3.1 models including Llama-3.1-70B and Llama-3.1-8B with detailed pre-training and post-training insights. The Llama-3.1 8B model's 128k context performance was found underwhelming compared to Mistral Nemo and Yi 34B 200K. Mistral is deprecating older Apache open-source models, focusing on Large 2 and Mistral Nemo 12B. The news also highlights community discussions and benchmarking comparisons.
Llama 3.1 Leaks: big bumps to 8B, minor bumps to 70b, and SOTA OSS 405b model
llama-3-1-405b llama-3-8b llama-3-70b llama-3-1-8b gpt-4o gpt-4o-mini claude-3-5 qwen-2 meta-ai-fair openai alibaba multilinguality code-generation context-windows model-training synthetic-data benchmarking reasoning fine-tuning model-performance dataset-release swyx philschmid jjitsev lewtun teknium1 adcock_brett
Llama 3.1 leaks reveal a 405B dense model with 128k context length, trained on 39.3M GPU hours using H100-80GB GPUs, and fine-tuned with over 25M synthetic examples. The model shows significant benchmark improvements, especially for the 8B and 70B variants, with some evals suggesting the 70B outperforms GPT-4o. GPT-4o Mini launched as a cost-efficient variant with strong performance but some reasoning weaknesses. Synthetic datasets like NuminaMath enable models such as Alibaba Qwen 2 to surpass GPT-4o and Claude 3.5 in math competitions. Discussions include reasoning task benchmarks and dataset building for improved reasoning.
That GPT-4o Demo
gpt-4o gemma-2 meta-code-llama openai google-deepmind meta-ai-fair voice-generation ocr screen-sharing vision code-understanding model-customization efficiency textual-intelligence multimodal-agents sft distillation rlhf model-merging model-optimization safety romain-huet fchollet
Romain Huet demonstrated an unreleased version of GPT-4o on ChatGPT Desktop showcasing capabilities like low latency voice generation, whisper tone moderation, camera mode streaming video to GPT-4o, rapid OCR, screen sharing with ChatGPT for programming help, clipboard reading, and vision-based code conversation. OpenAI's four investment areas highlighted include textual intelligence, efficiency/cost, model customization, and multimodal agents. Google DeepMind released Gemma 2 models in 9B and 27B sizes trained on 8T and 13T tokens respectively, using SFT, distillation, RLHF, and model merging, optimized for TPUv5e with strong performance and safety measures. Meta AI announced the Meta LLM Compiler built on Meta Code Llama with enhanced code optimization and compiler features.
Shall I compare thee to a Sonnet's day?
claude-3.5-sonnet claude-3.5 gpt-4o gemini-1.5-pro anthropic lmsys glif comfyui hard-prompts json json-extraction meme-generation instruction-following app-development fusion-energy nuclear-fission productivity fchollet mustafasuleyman
Claude 3.5 Sonnet from Anthropic achieves top rankings in coding and hard prompt arenas, surpassing GPT-4o and competing with Gemini 1.5 Pro at lower cost. Glif demonstrates a fully automated Wojak meme generator using Claude 3.5 for JSON generation and ComfyUI for images, showcasing new JSON extractor capabilities. Artifacts enables rapid creation of niche apps, exemplified by a dual monitor visualizer made in under 5 minutes. François Chollet highlights that fusion energy is not a near-term solution compared to existing nuclear fission plants. Mustafa Suleyman notes that 75% of desk workers now use AI, marking a shift toward AI-assisted productivity.
Gemini Nano: 50-90% of Gemini Pro, <100ms inference, on device, in Chrome Canary
gemini-nano gemini-pro claude-3.5-sonnet gpt-4o deepseek-coder-v2 glm-0520 nemotron-4-340b gpt-4-turbo-0409 google gemini huggingface anthropic deepseek zhipu-ai tsinghua nvidia model-quantization prompt-api optimization model-weights benchmarking code-generation math synthetic-data automatic-differentiation retrieval-augmented-generation mitigating-memorization tree-search inference-time-algorithms adcock_brett dair_ai lmsysorg
The latest Chrome Canary now includes a feature flag for Gemini Nano, offering a prompt API and on-device optimization guide, with models Nano 1 and 2 at 1.8B and 3.25B parameters respectively, showing decent performance relative to Gemini Pro. The base and instruct-tuned model weights have been extracted and posted to HuggingFace. In AI model releases, Anthropic launched Claude 3.5 Sonnet, which outperforms GPT-4o on some benchmarks, is twice as fast as Opus, and is free to try. DeepSeek-Coder-V2 achieves 90.2% on HumanEval and 75.7% on MATH, surpassing GPT-4-Turbo-0409, with models up to 236B parameters and 128K context length. GLM-0520 from Zhipu AI/Tsinghua ranks highly in coding and overall benchmarks. NVIDIA announced Nemotron-4 340B, an open model family for synthetic data generation. Research highlights include TextGrad, a framework for automatic differentiation on textual feedback; PlanRAG, an iterative plan-then-RAG decision-making technique; a paper on goldfish loss to mitigate memorization in LLMs; and a tree search algorithm for language model agents.
Claude Crushes Code - 92% HumanEval and Claude.ai Artifacts
claude-3.5-sonnet claude-3-opus gpt-4o anthropic openai cognition benchmarking model-performance coding model-optimization fine-tuning instruction-following model-efficiency model-release api performance-optimization alex-albert
Claude 3.5 Sonnet, released by Anthropic, is positioned as a Pareto improvement over Claude 3 Opus, operating at twice the speed and costing one-fifth as much. It achieves state-of-the-art results on benchmarks like GPQA, MMLU, and HumanEval, surpassing even GPT-4o and Claude 3 Opus on vision tasks. The model demonstrates significant advances in coding capabilities, passing 64% of test cases compared to 38% for Claude 3 Opus, and is capable of autonomously fixing pull requests. Anthropic also introduced the Artifacts feature, enabling users to interact with AI-generated content such as code snippets and documents in a dynamic workspace, similar to OpenAI's Code Interpreter. This release highlights improvements in performance, cost-efficiency, and coding proficiency, signaling a growing role for LLMs in software development.
Nemotron-4-340B: NVIDIA's new large open models, built on syndata, great for syndata
nemotron-4-340b mixtral llama-3 gemini-1.5 gpt-4o mamba-2-hybrid-8b samba-3.8b-instruct dolphin-2.9.3 faro-yi-9b-dpo nvidia hugging-face mistral-ai llamaindex cohere gemini mistral synthetic-data model-alignment reward-models fine-tuning long-context model-scaling inference-speed mixture-of-agents open-source-models model-training instruction-following context-windows philipp-schmid bryan-catanzaro oleksii-kuchaiev rohanpaul_ai cognitivecompai _philschmid 01ai_yi
NVIDIA has scaled up its Nemotron-4 model from 15B to a massive 340B dense model, trained on 9T tokens, achieving performance comparable to GPT-4. The model alignment process uses over 98% synthetic data, with only about 20K human-annotated samples for fine-tuning and reward model training. The synthetic data generation pipeline is open-sourced, including synthetic prompts and preference data generation. The base and instruct versions outperform Mixtral and Llama 3, while the reward model ranks better than Gemini 1.5, Cohere, and GPT-4o. Other notable models include Mamba-2-Hybrid 8B, which is up to 8x faster than Transformers and excels on long-context tasks, Samba-3.8B-instruct for infinite context length with linear complexity, Dolphin-2.9.3 tiny models optimized for low-resource devices, and Faro Yi 9B DPO with a 200K context window running efficiently on 16GB VRAM. The Mixture-of-Agents technique boosts open-source LLMs beyond GPT-4 Omni on AlpacaEval 2.0.
The Last Hurrah of Stable Diffusion?
llama-3-8b llama-3 qwen-2 gpt-4 gpt-4o stability-ai togethercompute model-architecture fine-tuning benchmarks dataset-release model-evaluation reasoning model-training retrieval-augmented-generation multimodality emad-mostaque rohanpaul_ai fchollet mikeknoop micahgoldblum teknium1 rasbt percyliang
Stability AI launched Stable Diffusion 3 Medium with models ranging from 450M to 8B parameters, featuring the MMDiT architecture and T5 text encoder for image text rendering. The community has shown mixed reactions following the departure of key researchers like Emad Mostaque. On AI models, Llama 3 8B Instruct shows strong evaluation correlation with GPT-4, while Qwen 2 Instruct surpasses Llama 3 on MMLU benchmarks. The Mixture of Agents (MoA) framework outperforms GPT-4o on AlpacaEval 2.0. Techniques like Spectrum and QLoRA enable efficient fine-tuning with less VRAM. Research on grokking reveals transformers can transition from memorization to generalization through extended training. Benchmark initiatives include the $1M ARC Prize Challenge for AGI progress and LiveBench, a live LLM benchmark to prevent dataset contamination. The Character Codex Dataset offers open data on over 15,000 characters for RAG and synthetic data. The MLX 0.2 tool enhances LLM experience on Apple Silicon Macs with improved UI and faster retrieval-augmented generation.
Ten Commandments for Deploying Fine-Tuned Models
claude-3-opus claude-3 gpt-4o anthropic google openai fine-tuning prompt-engineering model-evaluation feature-alteration benchmarking model-performance open-source-models kyle-corbitt bindureddy alexalbert__
Gemini-in-Google-Slides is highlighted as a useful tool for summarizing presentations. Kyle Corbitt's talk on deploying fine-tuned models in production emphasizes avoiding fine-tuning unless necessary, focusing on prompting, data quality, appropriate model choice, and thorough evaluation. Anthropic showcased feature alteration in Claude AI, demonstrating control over model behavior and increased understanding of large language models. Open-source models like GPT-4o are approaching closed-source performance on benchmarks like MMLU for simple tasks, though advanced models remain necessary for complex automation.
Chameleon: Meta's (unreleased) GPT4o-like Omnimodal Model
chameleon gpt-4o gemini-1.5-flash claude-3 meta-ai-fair openai google-deepmind anthropic reddit multimodality early-fusion benchmarking model-training tokenization streaming tool-use vision coding hallucination-detection model-performance armen-aghajanyan sama alexandr-wang abacaj alexalbert__
Meta AI FAIR introduced Chameleon, a new multimodal model family with 7B and 34B parameter versions trained on 10T tokens of interleaved text and image data enabling "early fusion" multimodality that can natively output any modality. While reasoning benchmarks are modest, its "omnimodality" approach competes well with pre-GPT4o multimodal models. OpenAI launched GPT-4o, a model excelling in benchmarks like MMLU and coding tasks, with strong multimodal capabilities but some regression in ELO scores and hallucination issues. Google DeepMind announced Gemini 1.5 Flash, a small model with 1M context window and flash performance, highlighting convergence trends between OpenAI and Google models. Anthropic updated Claude 3 with streaming support, forced tool use, and vision tool integration for multimodal knowledge extraction. OpenAI also partnered with Reddit, raising industry attention.
Cursor reaches >1000 tok/s finetuning Llama3-70b for fast file editing
gpt-4 gpt-4o gpt-4-turbo gpt-4o-mini llama bloom stable-diffusion cursor openai anthropic google-deepmind huggingface speculative-decoding code-edits multimodality image-generation streaming tool-use fine-tuning benchmarking mmlu model-performance evaluation synthetic-data context-windows sama abacaj imjaredz erhartford alexalbert svpino maximelabonne _philschmid
Cursor, an AI-native IDE, announced a speculative edits algorithm for code editing that surpasses GPT-4 and GPT-4o in accuracy and latency, achieving speeds of over 1000 tokens/s on a 70b model. OpenAI released GPT-4o with multimodal capabilities including audio, vision, and text, noted to be 2x faster and 50% cheaper than GPT-4 turbo, though with mixed coding performance. Anthropic introduced streaming, forced tool use, and vision features for developers. Google DeepMind unveiled Imagen Video and Gemini 1.5 Flash, a small model with a 1M-context window. HuggingFace is distributing $10M in free GPUs for open-source AI models like Llama, BLOOM, and Stable Diffusion. Evaluation insights highlight challenges with LLMs on novel problems and benchmark saturation, with new benchmarks like MMLU-Pro showing significant drops in top model performance.
Not much happened today
gpt-4o gemini-1.5-pro gemini-1.5-flash imagen-3 veo reka-core qwen-1.5-110b openai google-deepmind anthropic rekailabs alibaba salesforce multimodality long-context model-releases reinforcement-learning model-benchmarking text-to-image video-generation ai-assistants ilya-sutskever jakub-pachocki mike-krieger sama
Ilya Sutskever steps down as Chief Scientist at OpenAI after nearly a decade, with Jakub Pachocki named as his successor. Google DeepMind announces Gemini 1.5 Pro and Gemini 1.5 Flash models featuring 2 million token context and improved multimodal capabilities, alongside demos of Project Astra AI assistant, Imagen 3 text-to-image model, and Veo generative video model. GPT-4o tops the VHELM leaderboard and outperforms competitors on LMSYS Chatbot Arena. Reka Core multimodal model with 128K context and Alibaba's Qwen1.5-110B open-source model are released. Salesforce shares an online RLHF recipe.
GPT-4o: the new SOTA-EVERYTHING Frontier model (GPT4T version)
gpt-4o gpt-3.5 llama-3 openai hugging-face nous-research eleutherai hazyresearch real-time-reasoning coding-capabilities fine-tuning knowledge-distillation hardware-optimization quantization multimodality mixture-of-experts efficient-attention model-scaling depth-upscaling transformer-architecture gpu-optimization prompt-engineering
OpenAI launched GPT-4o, a frontier model supporting real-time reasoning across audio, vision, and text, now free for all ChatGPT users with enhanced coding capabilities and upcoming advanced voice and video features. Discussions cover open-source LLMs like Llama 3, fine-tuning techniques including knowledge distillation for GPT-3.5, and hardware optimization strategies such as quantization. Emerging architectures include multimodal integrations with ChatGPT voice and Open Interpreter API, Mixture of Experts models combining autoregressive and diffusion approaches, and novel designs like the YOCO architecture and ThunderKittens DSL for efficient GPU use. Research advances in efficient attention methods like Conv-Basis using FFT and model scaling techniques such as depth upscaling were also highlighted.
GPT-4o: the new SOTA-EVERYTHING Frontier model (GPT4O version)
gpt-4o gpt-4-turbo openai lmsys multion adept multimodality vision speech-recognition tokenization real-time-processing coding model-performance model-optimization desktop-agents sama gdb
OpenAI has released GPT-4o, a new multimodal model capable of reasoning across text, audio, and video in real time with low latency (~300ms). It features voice and vision capabilities, improved non-English language performance with an expanded 200k vocabulary tokenizer, and is available to all ChatGPT users including free plans. GPT-4o is half the price and twice as fast as GPT-4-turbo with 5x rate limits. The model supports real-time voice and video input/output and shows strong coding capabilities. The release includes a new desktop app that can read screen and clipboard history, challenging existing desktop agent startups. The announcement was accompanied by demos including image generation and 3D object handling, with OpenAI achieving state-of-the-art performance in ASR and vision tasks. The update was widely discussed on social media, with comparisons to GPT-4T highlighting GPT-4o's speed and versatility. "GPT-4o is smart, fast, natively multimodal, and a step towards more natural human-computer interaction" and "extremely versatile and fun to play with".
World_sim.exe
gpt-4 gpt-4o grok-1 llama-cpp claude-3-opus claude-3 gpt-5 nvidia nous-research stability-ai hugging-face langchain anthropic openai multimodality foundation-models hardware-optimization model-quantization float4 float6 retrieval-augmented-generation text-to-video prompt-engineering long-form-rag gpu-optimization philosophy-of-ai agi-predictions jensen-huang yann-lecun sam-altman
NVIDIA announced Project GR00T, a foundation model for humanoid robot learning using multimodal instructions, built on their tech stack including Isaac Lab, OSMO, and Jetson Thor. They revealed the DGX Grace-Blackwell GB200 with over 1 exaflop compute, capable of training GPT-4 1.8T parameters in 90 days on 2000 Blackwells. Jensen Huang confirmed GPT-4 has 1.8 trillion parameters. The new GB200 GPU supports float4/6 precision with ~3 bits per parameter and achieves 40,000 TFLOPs on fp4 with 2x sparsity.
Open source highlights include the release of Grok-1, a 340B parameter model, and Stability AI's SV3D, an open-source text-to-video generation solution. Nous Research collaborated on implementing Steering Vectors in Llama.CPP.
In Retrieval Augmented Generation (RAG), a new 5.5-hour tutorial builds a pipeline using open-source HF models, and LangChain released a video on query routing and announced integration with NVIDIA NIM for GPU-optimized LLM inference.
Prominent opinions include Yann LeCun distinguishing language from other cognitive abilities, Sam Altman predicting AGI arrival in 6 years with a leap from GPT-4 to GPT-5 comparable to GPT-3 to GPT-4, and discussions on the philosophical status of LLMs like Claude. There is also advice against training models from scratch for most companies.