All tags
Topic: "model-merging"
not much happened today
deepseek-r1 qwen-2.5 qwen-2.5-max deepseek-v3 deepseek-janus-pro gpt-4 nvidia anthropic openai deepseek huawei vercel bespoke-labs model-merging multimodality reinforcement-learning chain-of-thought gpu-optimization compute-infrastructure compression crypto-api image-generation saranormous zizhpan victormustar omarsar0 markchen90 sakanaailabs reach_vb madiator dain_mclau francoisfleuret garygodchaux arankomatsuzaki id_aa_carmack lavanyasant virattt
Huawei chips are highlighted in a diverse AI news roundup covering NVIDIA's stock rebound, new open music foundation models like Local Suno, and competitive AI models such as Qwen 2.5 Max and Deepseek V3. The release of DeepSeek Janus Pro, a multimodal LLM with image generation capabilities, and advancements in reinforcement learning and chain-of-thought reasoning are noted. Discussions include GPU rebranding with NVIDIA's H6400 GPUs, data center innovations, and enterprise AI applications like crypto APIs in hedge funds. "Deepseek R1's capabilities" and "Qwen 2.5 models added to applications" are key highlights.
Olympus has dropped (aka, Amazon Nova Micro|Lite|Pro|Premier|Canvas|Reel)
amazon-nova claude-3 llama-3-70b gemini-1.5-flash gpt-4o amazon anthropic google-deepmind sakana-ai-labs multimodality benchmarking model-merging model-performance model-architecture model-optimization population-based-learning philschmid bindureddy
Amazon announced the Amazon Nova family of multimodal foundation models at AWS Re:Invent, available immediately with no waitlist in configurations like Micro, Lite, Pro, Canvas, and Reel, with Premier and speech-to-speech coming next year. These models offer 2-4x faster token speeds and are 25%-400% cheaper than competitors like Anthropic Claude models, positioning Nova as a serious contender in AI engineering. Pricing undercuts models such as Google DeepMind Gemini Flash 8B, and some Nova models extend context length up to 300k tokens. However, benchmarking controversy exists as some evaluations show Nova scoring below Llama-3 70B in LiveBench AI metrics. Separately, CycleQD was introduced by Sakana AI Labs, using evolutionary computation for population-based model merging to develop niche LLM agents.
DeepSeek Janus and Meta SpiRit-LM: Decoupled Image and Expressive Voice Omnimodality
nemotron-70b claude claude-3.5-sonnet gpt-4o deepseek meta-ai-fair wandb nvidia anthropic hugging-face perplexity-ai multimodality image-generation speech-synthesis fine-tuning model-merging benchmarking open-source model-optimization reinforcement-learning bindureddy aravsrinivas danielhanchen clementdelangue cwolferesearch
DeepSeek Janus and Meta SpiRit-LM are two notable multimodality AI models recently released, showcasing advances in image generation and speech synthesis respectively. DeepSeek Janus separates vision encoders for image understanding and generation, achieving better results in both tasks. Meta's SpiRit-LM introduces an expressive speech and writing model generating pitch and style units, improving over standard TTS. Additionally, W&B Weave offers comprehensive LLM observability and multimodality fine-tuning tools. Industry updates include Nvidia's Nemotron 70b model underperforming, Meta open-sourcing Movie Gen Bench for media generation benchmarking, Perplexity launching internal search with multi-step reasoning, and Anthropic updating Claude apps. Open source progress includes Hugging Face's gradient accumulation fix in transformers and advocacy for open source AI to prevent Big Tech dominance. "Model merging for combining skills of multiple models" is also highlighted.
not much happened today
o1-preview o1-mini qwen-2.5 gpt-4o deepseek-v2.5 gpt-4-turbo-2024-04-09 grin llama-3-1-405b veo kat openai qwen deepseek-ai microsoft kyutai-labs perplexity-ai together-ai meta-ai-fair google-deepmind hugging-face google anthropic benchmarking math coding instruction-following model-merging model-expressiveness moe voice voice-models generative-video competition open-source model-deployment ai-agents hyung-won-chung noam-brown bindureddy akhaliq karpathy aravsrinivas fchollet cwolferesearch philschmid labenz ylecun
OpenAI's o1-preview and o1-mini models lead benchmarks in Math, Hard Prompts, and Coding. Qwen 2.5 72B model shows strong performance close to GPT-4o. DeepSeek-V2.5 tops Chinese LLMs, rivaling GPT-4-Turbo-2024-04-09. Microsoft's GRIN MoE achieves good results with 6.6B active parameters. Moshi voice model from Kyutai Labs runs locally on Apple Silicon Macs. Perplexity app introduces voice mode with push-to-talk. LlamaCoder by Together.ai uses Llama 3.1 405B for app generation. Google DeepMind's Veo is a new generative video model for YouTube Shorts. The 2024 ARC-AGI competition increases prize money and plans a university tour. A survey on model merging covers 50+ papers for LLM alignment. The Kolmogorov–Arnold Transformer (KAT) paper proposes replacing MLP layers with KAN layers for better expressiveness. Hugging Face Hub integrates with Google Cloud Vertex AI Model Garden for easier open-source model deployment. Agent.ai is introduced as a professional network for AI agents. "Touching grass is all you need."
nothing much happened today
o1 chatgpt-4o llama-3-1-405b openai lmsys scale-ai cognition langchain qdrant rohanpaul_ai reinforcement-learning model-merging embedding-models toxicity-detection image-editing dependency-management automated-code-review visual-search benchmarking denny_zhou svpino alexandr_wang cwolferesearch rohanpaul_ai _akhaliq kylebrussell
OpenAI's o1 model faces skepticism about open-source replication due to its extreme restrictions and unique training advances like RL on CoT. ChatGPT-4o shows significant performance improvements across benchmarks. Llama-3.1-405b fp8 and bf16 versions perform similarly with cost benefits for fp8. A new open-source benchmark "Humanity's Last Exam" offers $500K in prizes to challenge LLMs. Model merging benefits from neural network sparsity and linear mode connectivity. Embedding-based toxic prompt detection achieves high accuracy with low compute. InstantDrag enables fast, optimization-free drag-based image editing. LangChain v0.3 releases with improved dependency management. Automated code review tool CodeRabbit adapts to team coding styles. Visual search advances integrate multimodal data for better product search. Experts predict AI will be default software by 2030.
Cerebras Inference: Faster, Better, AND Cheaper
llama-3.1-8b llama-3.1-70b gemini-1.5-flash gemini-1.5-pro cogvideox-5b mamba-2 rene-1.3b llama-3.1 gemini-1.5 claude groq cerebras cursor google-deepmind anthropic inference-speed wafer-scale-chips prompt-caching model-merging benchmarking open-source-models code-editing model-optimization jeremyphoward sam-altman nat-friedman daniel-gross swyx
Groq led early 2024 with superfast LLM inference speeds, achieving ~450 tokens/sec for Mixtral 8x7B and 240 tokens/sec for Llama 2 70B. Cursor introduced a specialized code edit model hitting 1000 tokens/sec. Now, Cerebras claims the fastest inference with their wafer-scale chips, running Llama3.1-8b at 1800 tokens/sec and Llama3.1-70B at 450 tokens/sec at full precision, with competitive pricing and a generous free tier. Google's Gemini 1.5 models showed significant benchmark improvements, especially Gemini-1.5-Flash and Gemini-1.5-Pro. New open-source models like CogVideoX-5B and Mamba-2 (Rene 1.3B) were released, optimized for consumer hardware. Anthropic's Claude now supports prompt caching, improving speed and cost efficiency. "Cerebras Inference runs Llama3.1 20x faster than GPU solutions at 1/5 the price."
That GPT-4o Demo
gpt-4o gemma-2 meta-code-llama openai google-deepmind meta-ai-fair voice-generation ocr screen-sharing vision code-understanding model-customization efficiency textual-intelligence multimodal-agents sft distillation rlhf model-merging model-optimization safety romain-huet fchollet
Romain Huet demonstrated an unreleased version of GPT-4o on ChatGPT Desktop showcasing capabilities like low latency voice generation, whisper tone moderation, camera mode streaming video to GPT-4o, rapid OCR, screen sharing with ChatGPT for programming help, clipboard reading, and vision-based code conversation. OpenAI's four investment areas highlighted include textual intelligence, efficiency/cost, model customization, and multimodal agents. Google DeepMind released Gemma 2 models in 9B and 27B sizes trained on 8T and 13T tokens respectively, using SFT, distillation, RLHF, and model merging, optimized for TPUv5e with strong performance and safety measures. Meta AI announced the Meta LLM Compiler built on Meta Code Llama with enhanced code optimization and compiler features.
Mergestral, Meta MTIAv2, Cohere Rerank 3, Google Infini-Attention
mistral-8x22b command-r-plus rerank-3 infini-attention llama-3 sd-1.5 cosxl meta-ai-fair mistral-ai cohere google stability-ai hugging-face ollama model-merging training-accelerators retrieval-augmented-generation linear-attention long-context foundation-models image-generation rag-pipelines model-benchmarking context-length model-performance aidan_gomez ylecun swyx
Meta announced their new MTIAv2 chips designed for training and inference acceleration with improved architecture and integration with PyTorch 2.0. Mistral released the 8x22B Mixtral model, which was merged back into a dense model to effectively create a 22B Mistral model. Cohere launched Rerank 3, a foundation model enhancing enterprise search and retrieval-augmented generation (RAG) systems supporting 100+ languages. Google published a paper on Infini-attention, an ultra-scalable linear attention mechanism demonstrated on 1B and 8B models with 1 million sequence length. Additionally, Meta's Llama 3 is expected to start rolling out soon. Other notable updates include Command R+, an open model surpassing GPT-4 in chatbot performance with 128k context length, and advancements in Stable Diffusion models and RAG pipelines.
Claude 3 is officially America's Next Top Model
claude-3-opus claude-3-sonnet claude-3-haiku gpt-4o-mini mistral-7b qwen-72b anthropic mistral-ai huggingface openrouter stable-diffusion automatic1111 comfyui fine-tuning model-merging alignment ai-ethics benchmarking model-performance long-context cost-efficiency model-evaluation mark_riedl ethanjperez stuhlmueller ylecun aravsrinivas
Claude 3 Opus outperforms GPT4T and Mistral Large in blind Elo rankings, with Claude 3 Haiku marking a new cost-performance frontier. Fine-tuning techniques like QLoRA on Mistral 7B and evolutionary model merging on HuggingFace models are highlighted. Public opinion shows strong opposition to ASI development. Research supervision opportunities in AI alignment are announced. The Stable Diffusion 3 (SD3) release raises workflow concerns for tools like ComfyUI and automatic1111. Opus shows a 5% performance dip on OpenRouter compared to the Anthropic API. A new benchmark stresses LLM recall at long contexts, with Mistral 7B struggling and Qwen 72b performing well.
Welcome /r/LocalLlama!
cerebrum-8x7b mixtral-7b gpt-3.5-turbo gemini-pro moistral-11b-v1 claude-opus qwen-vl-chat sakana openinterpreter reddit aether-research mistral-ai nvidia lmdeploy model-merging benchmarking quantization performance-optimization deployment vision fine-tuning training-data synthetic-data rag gui
Sakana released a paper on evolutionary model merging. OpenInterpreter launched their O1 devkit. Discussions highlight Claude Haiku's underrated performance with 10-shot examples. On Reddit's IPO, AINews introduces Reddit summaries starting with /r/LocalLlama, covering upcoming subreddits like r/machinelearning and r/openai. Aether Research released Cerebrum 8x7b based on Mixtral, matching GPT-3.5 Turbo and Gemini Pro on reasoning tasks, setting a new open-source reasoning SOTA. Moistral 11B v1 finetuned model from Cream-Phi-2 creators was released. A creative writing benchmark uses Claude Opus as judge. Hobbyists explore 1.58 BitNet ternary quantization and 1-bit LLMs training. Nvidia's Blackwell (h200) chip supports FP4 precision quantization. LMDeploy v0.2.6+ enables efficient vision-language model deployment with models like Qwen-VL-Chat. Users seek GUIs for LLM APIs with plugin and RAG support. Pipelines for synthetic training data generation and fine-tuning language models for chat are discussed.
Mistral Large disappoints
mistral-large mistral-small mixtral-8x7b gpt-4-turbo dreamgen-opus-v1 mistral-ai openai hugging-face benchmarking model-merging fine-tuning reinforcement-learning model-training tokenization model-optimization ai-assisted-decompilation performance cost-efficiency deception roleplay deep-speed dpo timotheeee1 cogbuji plasmator jsarnecki maldevide spottyluck mrjackspade
Mistral announced Mistral Large, a new language model achieving 81.2% accuracy on MMLU, trailing GPT-4 Turbo by about 5 percentage points on benchmarks. The community reception has been mixed, with skepticism about open sourcing and claims that Mistral Small outperforms the open Mixtral 8x7B. Discussions in the TheBloke Discord highlighted performance and cost-efficiency comparisons between Mistral Large and GPT-4 Turbo, technical challenges with DeepSpeed and DPOTrainer for training, advances in AI deception for roleplay characters using DreamGen Opus V1, and complexities in model merging using linear interpolation and PEFT methods. Enthusiasm for AI-assisted decompilation was also expressed, emphasizing the use of open-source projects for training data.
One Year of Latent Space
gemini-1.5 gemma-7b mistral-next opus-v1 orca-2-13b nous-hermes-2-dpo-7b google-deepmind nous-research mistral-ai hugging-face nvidia langchain jetbrains ai-ethics bias-mitigation fine-tuning performance-optimization model-merging knowledge-transfer text-to-3d ai-hallucination hardware-optimization application-development vulnerability-research jim-keller richard-socher
Latent Space podcast celebrated its first anniversary, reaching #1 in AI Engineering podcasts and 1 million unique readers on Substack. The Gemini 1.5 image generator by Google DeepMind sparked controversy over bias and inaccurate representation, leading to community debates on AI ethics. Discussions in TheBloke and LM Studio Discords highlighted AI's growing role in creative industries, especially game development and text-to-3D tools. Fine-tuning and performance optimization of models like Gemma 7B and Mistral-next were explored in Nous Research AI and Mistral Discords, with shared solutions including learning rates and open-source tools. Emerging trends in AI hardware and application development were discussed in CUDA MODE and LangChain AI Discords, including critiques of Nvidia's CUDA by Jim Keller and advancements in reducing AI hallucinations hinted by Richard Socher.
Karpathy emerges from stealth?
mistral-7b mixtral-8x7b zephyr-7b gpt-4 llama-2 intel mistral-ai audiogen thebloke tokenization quantization model-optimization fine-tuning model-merging computational-efficiency memory-optimization retrieval-augmented-generation multi-model-learning meta-reasoning dataset-sharing open-source ethical-ai community-collaboration andrej-karpathy
Andrej Karpathy released a comprehensive 2-hour tutorial on tokenization, detailing techniques up to GPT-4's tokenizer and noting the complexity of Llama 2 tokenization with SentencePiece. Discussions in AI Discord communities covered model optimization and efficiency, focusing on quantization of models like Mistral 7B and Zephyr-7B to reduce memory usage for consumer GPUs, including Intel's new weight-only quantization algorithm. Efforts to improve computational efficiency included selective augmentation reducing costs by 57.76% and memory token usage versus kNN for Transformers. Challenges in hardware compatibility and software issues were shared, alongside fine-tuning techniques such as LoRA and model merging. Innovative applications of LLMs in retrieval-augmented generation (RAG), multi-model learning, and meta-reasoning were explored. The community emphasized dataset sharing, open-source releases like SDXL VAE encoded datasets and Audiogen AI codecs, and ethical AI use with censorship and guardrails. Collaboration and resource sharing remain strong in these AI communities.
Sora pushes SOTA
gemini-1.5 sora h20-gpt mistral-7b llama-13b mistralcasualml mixtral-instruct yi-models openai google-deepmind nvidia mistral-ai h2oai multimodality gpu-power-management long-context model-merging fine-tuning retrieval-augmented-generation role-play-model-optimization cross-language-integration training-loss synthetic-data-generation coding-support
Discord communities analyzed over 20 guilds, 312 channels, and 10550 messages reveal intense discussions on AI developments. Key highlights include the Dungeon Master AI assistant for Dungeons and Dragons using models like H20 GPT, GPU power supply debates involving 3090 and 3060 GPUs, and excitement around Google's Gemini 1.5 with its 1 million token context window and OpenAI's Sora model. Challenges with large world models (LWM) multimodality, GPT-assisted coding, and role-play model optimization with Yi models and Mixtral Instruct were discussed. Technical issues like model merging errors with MistralCasualML, fine-tuning scripts like AutoFineTune, and cross-language engineering via JSPyBridge were also prominent. NVIDIA's Chat with RTX feature leveraging retrieval-augmented generation (RAG) on 30+ series GPUs was compared to LMStudio's support for Mistral 7b and Llama 13b models. The community is cautiously optimistic about these frontier models' applications in media and coding.
The Dissection of Smaug (72B)
smaug-72b qwen-1.0 qwen-1.5 gpt-4 mistral-7b miqumaid wizardlm_evol_instruct_v2_196k openhermes-2.5 abacus-ai hugging-face nous-research laion thebloke lm-studio intel nvidia elevenlabs fine-tuning model-merging quantization web-ui model-conversion hardware-setup privacy image-generation optical-character-recognition prompt-engineering bindureddy
Abacus AI launched Smaug 72B, a large finetune of Qwen 1.0, which remains unchallenged on the Hugging Face Open LLM Leaderboard despite skepticism from Nous Research. LAION introduced a local voice assistant model named Bud-E with a notable demo. The TheBloke Discord community discussed model performance trade-offs between large models like GPT-4 and smaller quantized models, fine-tuning techniques using datasets like WizardLM_evol_instruct_V2_196k and OpenHermes-2.5, and challenges in web UI development and model merging involving Mistral-7b and MiquMaid. The LM Studio Discord highlighted issues with model conversion from PyTorch to gguf, hardware setups involving Intel Xeon CPUs and Nvidia P40 GPUs, privacy concerns, and limitations in image generation and web UI availability.
Gemini Ultra is out, to mixed reviews
gemini-ultra gemini-advanced solar-10.7b openhermes-2.5-mistral-7b subformer billm google openai mistral-ai hugging-face multi-gpu-support training-data-contamination model-merging model-alignment listwise-preference-optimization high-performance-computing parameter-sharing post-training-quantization dataset-viewer gpu-scheduling fine-tuning vram-optimization
Google released Gemini Ultra as a paid tier for "Gemini Advanced with Ultra 1.0" following the discontinuation of Bard. Reviews noted it is "slightly faster/better than ChatGPT" but with reasoning gaps. The Steam Deck was highlighted as a surprising AI workstation capable of running models like Solar 10.7B. Discussions in AI communities covered topics such as multi-GPU support for OSS Unsloth, training data contamination from OpenAI outputs, ethical concerns over model merging, and new alignment techniques like Listwise Preference Optimization (LiPO). The Mojo programming language was praised for high-performance computing. In research, the Subformer model uses sandwich-style parameter sharing and SAFE for efficiency, and BiLLM introduced 1-bit post-training quantization to reduce resource use. The OpenHermes dataset viewer tool was launched, and GPU scheduling with Slurm was discussed. Fine-tuning challenges for models like OpenHermes-2.5-Mistral-7B and VRAM requirements were also topics of interest.
Qwen 1.5 Released
qwen-1.5 mistral-7b sparsetral-16x7b-v2 bagel-7b-v0.4 deepseek-math-7b-instruct deepseek qwen mistral-ai hugging-face meta-ai-fair quantization token-context multilinguality retrieval-augmented-generation agent-planning code-generation sparse-moe model-merging fine-tuning direct-preference-optimization character-generation ascii-art kanji-generation vr retinal-resolution light-field-passthrough frozen-networks normalization-layers
Chinese AI models Yi, Deepseek, and Qwen are gaining attention for strong performance, with Qwen 1.5 offering up to 32k token context and compatibility with Hugging Face transformers and quantized models. The TheBloke Discord discussed topics like quantization of a 70B LLM, the introduction of the Sparse MoE model Sparsetral based on Mistral, debates on merging vs fine-tuning, and Direct Preference Optimization (DPO) for character generation. The Nous Research AI Discord covered challenges in Japanese Kanji generation, AI scams on social media, and Meta's VR headset prototypes showcased at SIGGRAPH 2023. Discussions also included fine-tuning frozen networks and new models like bagel-7b-v0.4, DeepSeek-Math-7b-instruct, and Sparsetral-16x7B-v2.
Less Lazy AI
hamster-v0.2 flan-t5 miqu-1-120b-gguf qwen2 axolotl openai hugging-face nous-research h2oai apple model-merging fine-tuning quantization vram-optimization plugin-development chatbot-memory model-training bug-reporting api-compatibility philschmid
The AI Discord summaries for early 2024 cover various community discussions and developments. Highlights include 20 guilds, 308 channels, and 10449 messages analyzed, saving an estimated 780 minutes of reading time. Key topics include Polymind Plugin Puzzle integrating PubMed API, roleplay with HamSter v0.2, VRAM challenges in Axolotl training, fine-tuning tips for FLAN-T5, and innovative model merging strategies. The Nous Research AI community discussed GPT-4's lyricism issues, quantization techniques using
llama.cpp
, frankenmerging with models like miqu-1-120b-GGUF, anticipation for Qwen2, and tools like text-generation-webui
and ExLlamaV2. The LM Studio community reported a bug where the app continues running after UI closure, with a workaround to forcibly terminate the process. These discussions reflect ongoing challenges and innovations in AI model training, deployment, and interaction. Trust in GPTs at all time low
llama-3 mistral-medium llava-1.6 miquella-120b-gguf tinymodels miqumaid harmony-4x7b-bf16 smaug-34b-v0.1 openai hugging-face mistral-ai nous-research bittensor context-management fine-tuning model-merging quantization gpu-servers visual-reasoning ocr dataset-release incentive-structures nick-dobos manojbh teknium arthurmensch
Discord communities were analyzed with 21 guilds, 312 channels, and 8530 messages reviewed, saving an estimated 628 minutes of reading time. Discussions highlighted challenges with GPTs and the GPT store, including critiques of the knowledge files capability and context management issues. The CUDA MODE Discord was introduced for CUDA coding support. Key conversations in the TheBloke Discord covered Xeon GPU server cost-effectiveness, Llama3 and Mistral Medium model comparisons, LLaVA-1.6's visual reasoning and OCR capabilities, and the leaked Miqu 70B model. Technical topics included fine-tuning TinyLlama and MiquMaid+Euryale models, and model merging with examples like Harmony-4x7B-bf16 and Smaug-34B-v0.1. The Nous Research AI Discord discussed style influence in LLMs, quantization issues, Bittensor incentives for AI model improvements, and the identification of MIQU as Mistral Medium. The release of the Open Hermes 2.5 dataset on Hugging Face was also announced. "Discussions pointed towards the need for better context management in GPTs, contrasting with OpenAI's no-code approach."
GPT4Turbo A/B Test: gpt-4-0125-preview
gpt-4-turbo gpt-4-1106-preview gpt-3.5 llama-2-7b-chat tiny-llama mistral openai thebloke nous-research hugging-face multi-gpu-support model-optimization model-merging fine-tuning context-windows chatbot-personas api-performance text-transcription cost-considerations model-troubleshooting
OpenAI released a new GPT-4 Turbo version in January 2024, prompting natural experiments in summarization and discussions on API performance and cost trade-offs. The TheBloke Discord highlighted UnSloth's upcoming limited multi-GPU support for Google Colab beginners, AI models like Tiny Llama and Mistral running on Nintendo Switch, and advanced model merging techniques such as DARE and SLERP. The OpenAI Discord noted issues with GPT-4-1106-preview processing delays, troubleshooting GPT model errors, and transcription challenges with GPT-3.5 and GPT-4 Turbo. Nous Research AI focused on extending context windows, notably LLaMA-2-7B-Chat reaching 16,384 tokens, and fine-tuning alternatives like SelfExtend. Discussions also touched on chatbot persona creation, model configuration optimizations, and societal impacts of AI technology.
Adept Fuyu-Heavy: Multimodal model for Agents
fuyu-heavy fuyu-8b gemini-pro claude-2 gpt4v gemini-ultra deepseek-coder-33b yi-34b-200k goliath-120b mistral-7b-instruct-v0.2 mamba rwkv adept hugging-face deepseek mistral-ai nous-research multimodality visual-question-answering direct-preference-optimization benchmarking model-size-estimation quantization model-merging fine-tuning instruct-tuning rms-optimization heterogeneous-ai-architectures recurrent-llms contrastive-preference-optimization
Adept launched Fuyu-Heavy, a multimodal model focused on UI understanding and visual QA, outperforming Gemini Pro on the MMMU benchmark. The model uses DPO (Direct Preference Optimization), gaining attention as a leading tuning method. The size of Fuyu-Heavy is undisclosed but estimated between 20B-170B parameters, smaller than rumored frontier models like Claude 2, GPT4V, and Gemini Ultra. Meanwhile, Mamba was rejected at ICLR for quality concerns. In Discord discussions, DeepSeek Coder 33B was claimed to outperform GPT-4 in coding tasks, and deployment strategies for large models like Yi-34B-200K and Goliath-120B were explored. Quantization debates highlighted mixed views on Q8 and EXL2 quants. Fine-tuning and instruct-tuning of Mistral 7B Instruct v0.2 were discussed, alongside insights on RMS optimization and heterogeneous AI architectures combining Transformers and Selective SSM (Mamba). The potential of recurrent LLMs like RWKV and techniques like Contrastive Preference Optimization (CPO) were also noted.
Nightshade poisons AI art... kinda?
mistral-7b falcon-7b mistral-ai hugging-face mixture-of-experts gpu-parallelism quantization fine-tuning model-merging ai-detection role-playing benchmarking
Over the weekend of 1/19-20/2024, discussions in TheBloke Discord covered key topics including Mixture of Experts (MoE) model efficiency, GPU parallelism, and quantization strategies. Users debated the effectiveness of AI detection tools like GPTZero and explored fine-tuning challenges with models such as Mistral 7B and Falcon 7B. Community interest was strong in developing simpler, community-powered quantization services and understanding model merging techniques. Ethical considerations around AI applications like AI girlfriend sites were also discussed.
Sama says: GPT-5 soon
gpt-5 mixtral-7b gpt-3.5 gemini-pro gpt-4 llama-cpp openai codium thebloke amd hugging-face mixture-of-experts fine-tuning model-merging 8-bit-optimization gpu-acceleration performance-comparison command-line-ai vector-stores embeddings coding-capabilities sam-altman ilya-sutskever itamar andrej-karpathy
Sam Altman at Davos highlighted that his top priority is launching the new model, likely called GPT-5, while expressing uncertainty about Ilya Sutskever's employment status. Itamar from Codium introduced the concept of Flow Engineering with AlphaCodium, gaining attention from Andrej Karpathy. On the TheBloke Discord, engineers discussed a multi-specialty mixture-of-experts (MOE) model combining seven distinct 7 billion parameter models specialized in law, finance, and medicine. Debates on 8-bit fine-tuning and the use of bitsandbytes with GPU support were prominent. Discussions also covered model merging using tools like Mergekit and compatibility with Alpaca format. Interest in optimizing AI models on AMD hardware using AOCL blas and lapack libraries with llama.cpp was noted. Users experimented with AI for command line tasks, and the Mixtral MoE model was refined to surpass larger models in coding ability. Comparisons among LLMs such as GPT-3.5, Mixtral, Gemini Pro, and GPT-4 focused on knowledge depth, problem-solving, and speed, especially for coding tasks.
1/13-14/2024: Don't sleep on #prompt-engineering
The OpenAI Discord community engaged in diverse discussions including prompt engineering techniques like contrastive Chain of Thought and step back prompting, and explored model merging and mixture-of-experts (MoE) concepts. Philosophical debates on AI consciousness and the ethics of AI-generated voices highlighted concerns about AI sentience and copyright issues. Technical clarifications were made on hyperdimensional vector space models used in modern AI embeddings. Users also discussed customizing GPT with personality profiles and prompt personalization to overcome token limits, and proposed a universal translator feature for multilingual Discord interactions. Key contributors included longtime regular MadameArchitect and community members such as @darthgustav and @metaldrgn.
1/12/2024: Anthropic coins Sleeper Agents
nous-mixtral 120b anthropic openai nous-research hugging-face reinforcement-learning fine-tuning backdoors model-security adversarial-training chain-of-thought model-merging dataset-release security-vs-convenience leo-gao andrej-karpathy
Anthropic released a new paper exploring the persistence of deceptive alignment and backdoors in models through stages of training including supervised fine-tuning and reinforcement learning safety training. The study found that safety training and adversarial training did not eliminate backdoors, which can cause models to write insecure code or exhibit hidden behaviors triggered by specific prompts. Notable AI figures like leo gao and andrej-karpathy praised the work, highlighting its implications for future model security and the risks of sleeper agent LLMs. Additionally, the Nous Research AI Discord community discussed topics such as the trade-off between security and convenience, the Hulk Dataset 0.1 for LLM fine-tuning, curiosity about a 120B model and Nous Mixtral, debates on LLM leaderboard legitimacy, and the rise of Frankenmerge techniques for model merging and capacity enhancement.
1/11/2024: Mixing Experts vs Merging Models
gpt-4-turbo gpt-4-0613 mixtral deepseekmoe phixtral deepseek-ai hugging-face nous-research teenage-engineering discord mixture-of-experts model-merging fine-tuning rag security discord-tos model-performance prompt-engineering function-calling semantic-analysis data-frameworks ash_prabaker shacrw teknium 0xevil everyoneisgross ldj pramod8481 mgreg_42266 georgejrjrjr kenakafrosty
18 guilds, 277 channels, and 1342 messages were analyzed with an estimated reading time saved of 187 minutes. The community switched to GPT-4 turbo and discussed the rise of Mixture of Experts (MoE) models like Mixtral, DeepSeekMOE, and Phixtral. Model merging techniques, including naive linear interpolation and "frankenmerges" by SOLAR and Goliath, are driving new performance gains on open leaderboards. Discussions in the Nous Research AI Discord covered topics such as AI playgrounds supporting prompt and RAG parameters, security concerns about third-party cloud usage, debates on Discord bots and TOS, skepticism about Teenage Engineering's cloud LLM, and performance differences between GPT-4 0613 and GPT-4 turbo. The community also explored fine-tuning strategies involving DPO, LoRA, and safetensors, integration of RAG with API calls, semantic differences between MoE and dense LLMs, and data frameworks like llama index and SciPhi-AI's synthesizer. Issues with anomalous characters in fine-tuning were also raised.
12/30/2023: Mega List of all LLMs
deita-v1.0 mixtral amazon-titan-text-express amazon-titan-text-lite nous-research hugging-face amazon mistral-ai local-attention computational-complexity benchmarking model-merging graded-modal-types function-calling data-contamination training-methods stella-biderman euclaise joey00072
Stella Biderman's tracking list of LLMs is highlighted, with resources shared for browsing. The Nous Research AI Discord discussed the Local Attention Flax module focusing on computational complexity, debating linear vs quadratic complexity and proposing chunking as a solution. Benchmark logs for various LLMs including Deita v1.0 with its SFT+DPO training method were shared. Discussions covered model merging, graded modal types, function calling in AI models, and data contamination issues in Mixtral. Community insights were sought on Amazon Titan Text Express and Amazon Titan Text Lite LLMs, including a unique training strategy involving bad datasets. Several GitHub repositories and projects like DRUGS, MathPile, CL-FoMo, and SplaTAM were referenced for performance and data quality evaluations.
12/23/2023: NeurIPS Best Papers of 2023
gpt-4 palm2 hermes-2.5 mistral-7b nous-research hugging-face apple context-length malware-security video-content music-content linear-layers api-access large-language-models embedding vector-databases model-merging model-interpretability striped-hyena-architecture quantization rmsnorm attention-mechanisms
The Latent Space Pod released a 3-hour recap of the best NeurIPS 2023 papers. The Nous Research AI Discord community discussed optimizing AI performance with shorter context lengths, malware security concerns linked to HuggingFace, and shared insights on video and music content. Technical discussions included the DYAD research paper proposing a faster alternative to linear layers, Apple's ML Ferret machine learning tool, and accessing PALM2 via API. The community also explored Large Language Models focusing on specialized models, data scaling, embedding/vector databases, model merging, and interpretability, with mentions of Hermes 2.5, GPT-4, and Mistral. Additionally, there were conversations on the Striped Hyena Architecture, quantization challenges, and fixes related to RMSNorm and the "Attention is All You Need" paper.
12/9/2023: The Mixtral Rush
mixtral hermes-2.5 hermes-2 mistral-yarn ultrachat discoresearch fireworks-ai hugging-face mistral-ai benchmarking gpu-requirements multi-gpu quantization gptq chain-of-thought min-p-sampling top-p-sampling model-sampling model-merging model-performance small-models reasoning-consistency temperature-sampling bjoernp the_bloke rtyax kalomaze solbus calytrix
Mixtral's weights were released without code, prompting the Disco Research community and Fireworks AI to implement it rapidly. Despite efforts, no significant benchmark improvements were reported, limiting its usefulness for local LLM usage but marking progress for the small models community. Discussions in the DiscoResearch Discord covered Mixtral's performance compared to models like Hermes 2.5 and Hermes 2, with evaluations on benchmarks such as winogrande, truthfulqa_mc2, and arc_challenge. Technical topics included GPU requirements, multi-GPU setups, and quantization via GPTQ. Benchmarking strategies like grammar-based evaluation, chain of thought (CoT), and min_p sampling were explored, alongside model sampling techniques like Min P and Top P to enhance response stability and creativity. Users also discussed GPTs' learning limitations and the adaptability of models under varying conditions, emphasizing min_p sampling's role in enabling higher temperature settings for creativity.