All tags
Topic: "mixture-of-experts"
not much happened today
dots-llm1 qwen3-235b xiaohongshu rednote-hilab deepseek huggingface mixture-of-experts open-source model-benchmarking fine-tuning inference context-windows training-data model-architecture model-performance model-optimization
China's Xiaohongshu (Rednote) released dots.llm1, a 142B parameter open-source Mixture-of-Experts (MoE) language model with 14B active parameters and a 32K context window, pretrained on 11.2 trillion high-quality, non-synthetic tokens. The model supports efficient inference frameworks like Docker, HuggingFace, and vLLM, and provides intermediate checkpoints every 1 trillion tokens, enabling flexible fine-tuning. Benchmarking claims it slightly surpasses Qwen3 235B on MMLU, though some concerns exist about benchmark selection and synthetic data verification. The release is notable for its truly open-source licensing and no synthetic data usage, sparking community optimism for support in frameworks such as llama.cpp and mlx.
AI Engineer World's Fair Talks Day 1
gemini-2.5 gemma claude-code mistral cursor anthropic openai aie google-deepmind meta-ai-fair agent-based-architecture open-source model-memorization scaling-laws quantization mixture-of-experts language-model-memorization model-generalization langgraph model-architecture
Mistral launched a new Code project, and Cursor released version 1.0. Anthropic improved Claude Code plans, while ChatGPT announced expanded connections. The day was dominated by AIE keynotes and tracks including GraphRAG, RecSys, and Tiny Teams. On Reddit, Google open-sourced the DeepSearch stack for building AI agents with Gemini 2.5 and LangGraph, enabling flexible agent architectures and integration with local LLMs like Gemma. A new Meta paper analyzed language model memorization, showing GPT-style transformers store about 3.5–4 bits/parameter and exploring the transition from memorization to generalization, with implications for Mixture-of-Experts models and quantization effects.
Qwen 3: 0.6B to 235B MoE full+base models that beat R1 and o1
qwen-3 qwen3-235b-a22b qwen3-30b-a3b deepseek-r1 o1 o3-mini grok-3 gemini-2.5-pro alibaba google-deepmind deepseek mistral-ai mixture-of-experts reinforcement-learning benchmarking model-release model-architecture long-context multi-agent-systems inference dataset-release awnihannun prince_canuma actuallyisaak oriolvinyalsml iscienceluvr reach_vb teortaxestex omarsar0
Qwen 3 has been released by Alibaba featuring a range of models including two MoE variants, Qwen3-235B-A22B and Qwen3-30B-A3B, which demonstrate competitive performance against top models like DeepSeek-R1, o1, o3-mini, Grok-3, and Gemini-2.5-Pro. The models introduce an "enable_thinking=True" mode with advanced soft switching for inference scaling. The release is notable for its Apache 2.0 license and broad inference platform support including MCP. The dataset improvements and multi-stage RL post-training contribute to performance gains. Meanwhile, Gemini 2.5 Pro from Google DeepMind shows strong coding and long-context reasoning capabilities, and DeepSeek R2 is anticipated soon. Twitter discussions highlight Qwen3's finegrained MoE architecture, large context window, and multi-agent system applications.
DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level
deepcoder-14b o3-mini o1 gemini-2.5-pro kimi-vl-a3b gpt-4o llama-4-scout maverick behemoth gen-4-turbo imagen-3 together-ai agentica opena bytedance google-deepmind moonshot-ai meta-ai-fair runway open-source reinforcement-learning code-generation multimodality model-training mixture-of-experts l2-normalization image-generation model-performance context-windows philschmid lepikhin reach_vb akhaliq yuchenj_uw epochairesearch danielhanchen c_valenzuelab
Together AI and Agentica released DeepCoder-14B, an open-source 14B parameter coding model rivaling OpenAI's o3-mini and o1 on coding benchmarks, trained with an open-source RL framework from ByteDance and costing about $26,880. Google DeepMind launched Gemini 2.5 Pro with experimental "Flash" versions available to subscribers. Moonshot AI introduced Kimi-VL-A3B, a multimodal model with 128K context outperforming gpt-4o on vision and math benchmarks. Meta AI released Llama 4 Scout and Maverick, with a larger Behemoth model in training, featuring mixture-of-experts and L2 norm techniques. Runway launched Gen-4 Turbo with 10x better results than Gen-3 at the same cost. Google announced Imagen 3, a high-quality text-to-image model now in Vertex AI, enabling easier object removal. The report highlights open-source contributions, reinforcement learning training optimizations, and significant model performance improvements across coding, multimodal, and image generation domains.
Llama 4's Controversial Weekend Release
llama-4 llama-3 llama-3-2 meta mixture-of-experts early-fusion attention-mechanisms fp8-training training-data benchmarking model-performance model-release multimodality open-models ahmad_al_dahle ylecun reach_vb yuchenj_uw
Meta released Llama 4, featuring two new medium-size MoE open models and a promised 2 Trillion parameter "behemoth" model, aiming to be the largest open model ever. The release included advanced training techniques like Chameleon-like early fusion with MetaCLIP, interleaved chunked attention without RoPE, native FP8 training, and training on up to 40 trillion tokens. Despite the hype, the release faced criticism for lack of transparency compared to Llama 3, implementation issues, and poor performance on some benchmarks. Meta leadership, including Ahmad Al Dahle, denied allegations of training on test sets. The smallest Scout model at 109B parameters is too large for consumer GPUs, and the claimed 10 million token context is disputed. The community response has been mixed, with some praising the openness and others pointing out discrepancies and quality concerns.
not much happened today
o3 o4-mini gpt-5 sonnet-3.7 gemma-3 qwen-2.5-vl gemini-2.5-pro gemma-7b llama-3-1-405b openai deepseek anthropic google meta-ai-fair inference-scaling reward-modeling coding-models ocr model-preview rate-limiting model-pricing architectural-advantage benchmarking long-form-reasoning attention-mechanisms mixture-of-experts gpu-throughput sama akhaliq nearcyan fchollet reach_vb philschmid teortaxestex epochairesearch omarsar0
OpenAI announced that o3 and o4-mini models will be released soon, with GPT-5 expected in a few months, delayed for quality improvements and capacity planning. DeepSeek introduced Self-Principled Critique Tuning (SPCT) to enhance inference-time scalability for generalist reward models. Anthropic's Sonnet 3.7 remains a top coding model. Google's Gemma 3 is available on KerasHub, and Qwen 2.5 VL powers a new Apache 2.0 licensed OCR model. Gemini 2.5 Pro entered public preview with increased rate limits and pricing announced, becoming a preferred model for many tasks except image generation. Meta's architectural advantage and the FrontierMath benchmark challenge AI's long-form reasoning and worldview development. Research reveals LLMs focus attention on the first token as an "attention sink," preserving representation diversity, demonstrated in Gemma 7B and LLaMa 3.1 models. MegaScale-Infer offers efficient serving of large-scale Mixture-of-Experts models with up to 1.90x higher per-GPU throughput.
not much happened today
gpt-4.5 claude-3.7-sonnet deepseek-r1 smolagents-codeagent gpt-4o llama-3-8b tinyr1-32b-preview r1-searcher forgetting-transformer nanomoe openai deepseek hugging-face mixture-of-experts reinforcement-learning kv-cache-compression agentic-ai model-distillation attention-mechanisms model-compression minimax model-pretraining andrej-karpathy cwolferesearch aymericroucher teortaxestex jonathanross321 akhaliq
The AI news recap highlights several key developments: nanoMoE, a PyTorch implementation of a mid-sized Mixture-of-Experts (MoE) model inspired by Andrej Karpathy's nanoGPT, enables pretraining on commodity hardware within a week. An agentic leaderboard ranks LLMs powering smolagents CodeAgent, with GPT-4.5 leading, followed by Claude-3.7-Sonnet. Discussions around DeepSeek-R1 emphasize AI model commoditization, with DeepSeek dubbed the "OpenAI of China." Q-Filters offer a training-free method for KV cache compression in autoregressive models, achieving 32x compression with minimal perplexity loss. The PokéChamp minimax language agent, powered by GPT-4o and Llama-3-8b, demonstrates strong performance in Pokémon battles. Other notable models include TinyR1-32B-Preview with Branch-Merge Distillation, R1-Searcher incentivizing search capability via reinforcement learning, and the Forgetting Transformer using a Forget Gate in softmax attention. These advancements reflect ongoing innovation in model architectures, compression, reinforcement learning, and agentic AI.
Gemini 2.0 Flash GA, with new Flash Lite, 2.0 Pro, and Flash Thinking
gemini-2.0-flash gemini-2.0-flash-lite gemini-2.0-pro-experimental gemini-1.5-pro deepseek-r1 gpt-2 llama-3-1 google-deepmind hugging-face anthropic multimodality context-windows cost-efficiency pretraining fine-tuning reinforcement-learning transformer tokenization embeddings mixture-of-experts andrej-karpathy jayalammar maartengr andrewyng nearcyan
Google DeepMind officially launched Gemini 2.0 models including Flash, Flash-Lite, and Pro Experimental, with Gemini 2.0 Flash outperforming Gemini 1.5 Pro while being 12x cheaper and supporting multimodal input and a 1 million token context window. Andrej Karpathy released a 3h31m video deep dive into large language models, covering pretraining, fine-tuning, and reinforcement learning with examples like GPT-2 and Llama 3.1. A free course on Transformer architecture was introduced by Jay Alammar, Maarten Gr, and Andrew Ng, focusing on tokenizers, embeddings, and mixture-of-expert models. DeepSeek-R1 reached 1.2 million downloads on Hugging Face with a detailed 36-page technical report. Anthropic increased rewards to $10K and $20K for their jailbreak challenge, while BlueRaven extension was updated to hide Twitter metrics for unbiased engagement.
How To Scale Your Model, by DeepMind
qwen-0.5 google-deepmind deepseek hugging-face transformers inference high-performance-computing robotics sim2real mixture-of-experts reinforcement-learning bias-mitigation rust text-generation open-source omarsar0 drjimfan tairanhe99 guanyashi lioronai _philschmid awnihannun clementdelangue
Researchers at Google DeepMind (GDM) released a comprehensive "little textbook" titled "How To Scale Your Model" covering modern Transformer architectures, inference optimizations beyond O(N^2) attention, and high-performance computing concepts like rooflines. The resource includes practical problems and real-time comment engagement. On AI Twitter, several key updates include the open-sourced humanoid robotics model ASAP inspired by athletes like Cristiano Ronaldo, LeBron James, and Kobe Bryant; a new paper on Mixture-of-Agents proposing the Self-MoA method for improved LLM output aggregation; training of reasoning LLMs using the GRPO algorithm from DeepSeek demonstrated on Qwen 0.5; findings on bias in LLMs used as judges highlighting the need for multiple independent evaluations; and the release of mlx-rs, a Rust library for machine learning with examples including Mistral text generation. Additionally, Hugging Face launched an AI app store featuring over 400,000 apps with 2,000 new daily additions and 2.5 million weekly visits, enabling AI-powered app search and categorization.
not much happened today
deepseek-v3 llama-3-1-405b gpt-4o gpt-5 minimax-01 claude-3-haiku cosmos-nemotron-34b openai deep-learning-ai meta-ai-fair google-deepmind saama langchain nvidia mixture-of-experts coding math scaling visual-tokenizers diffusion-models inference-time-scaling retrieval-augmented-generation ai-export-restrictions security-vulnerabilities prompt-injection gpu-optimization fine-tuning personalized-medicine clinical-trials ai-agents persistent-memory akhaliq
DeepSeek-V3, a 671 billion parameter mixture-of-experts model, surpasses Llama 3.1 405B and GPT-4o in coding and math benchmarks. OpenAI announced the upcoming release of GPT-5 on April 27, 2023. MiniMax-01 Coder mode in ai-gradio enables building a chess game in one shot. Meta research highlights trade-offs in scaling visual tokenizers. Google DeepMind improves diffusion model quality via inference-time scaling. The RA-DIT method fine-tunes LLMs and retrievers for better RAG responses. The U.S. proposes a three-tier export restriction system on AI chips and models, excluding countries like China and Russia. Security vulnerabilities in AI chatbots involving CSRF and prompt injection were revealed. Concerns about superintelligence and weapons-grade AI models were expressed. ai-gradio updates include NVIDIA NIM compatibility and new models like cosmos-nemotron-34b. LangChain integrates with Claude-3-haiku for AI agents with persistent memory. Triton Warp specialization optimizes GPU usage for matrix multiplication. Meta's fine-tuned Llama models, OpenBioLLM-8B and OpenBioLLM-70B, target personalized medicine and clinical trials.
Titans: Learning to Memorize at Test Time
minimax-01 gpt-4o claude-3.5-sonnet internlm3-8b-instruct transformer2 google meta-ai-fair openai anthropic langchain long-context mixture-of-experts self-adaptive-models prompt-injection agent-authentication diffusion-models zero-trust-architecture continuous-adaptation vision agentic-systems omarsar0 hwchase17 abacaj hardmaru rez0__ bindureddy akhaliq saranormous
Google released a new paper on "Neural Memory" integrating persistent memory directly into transformer architectures at test time, showing promising long-context utilization. MiniMax-01 by @omarsar0 features a 4 million token context window with 456B parameters and 32 experts, outperforming GPT-4o and Claude-3.5-Sonnet. InternLM3-8B-Instruct is an open-source model trained on 4 trillion tokens with state-of-the-art results. Transformer² introduces self-adaptive LLMs that dynamically adjust weights for continuous adaptation. Advances in AI security highlight the need for agent authentication, prompt injection defenses, and zero-trust architectures. Tools like Micro Diffusion enable budget-friendly diffusion model training, while LeagueGraph and Agent Recipes support open-source social media agents.
not much happened today
vllm deepseek-v3 llamaindex openai deepseek qdrant twilio llamaindex elevenlabs training-efficiency parallelism cpu-offloading gradient-descent mixture-of-experts fp8-precision memory-optimization ai-voice-assistants coding-assistants document-processing version-control learning-rate-schedules federated-learning agentic-systems multi-agent-systems deliberative-alignment chain-of-thought on-device-ai multimodality francois-fleuret daniel-hanchen aaron-defazio fchollet elad-gil wojciech-zaremba richard-socher
ChatGPT, Sora, and the OpenAI API experienced a >5 hour outage but are now restored. Updates to vLLM enable DeepSeek-V3 to run with enhanced parallelism and CPU offloading, improving model deployment flexibility. Discussions on gradient descent in top-k routing MoE and adoption of FP8 precision focus on training efficiency and memory optimization. AIDE, an AI voice medical assistant by Team Therasync, leverages Qdrant, OpenAI, and Twilio. DeepSeek-Engineer offers AI-powered coding assistance with structured outputs. LlamaIndex integrates LlamaCloud and ElevenLabs for large-scale document processing and voice interaction. Insights on version control with ghstack and advocacy for linear decay learning rate schedules highlight best practices in AI development. Experts predict smaller, tighter models, true multimodal models, and on-device AI in 2025. Proposals for planetary-scale federated learning and community AGI moonshots emphasize future AI directions. Discussions on agentic systems, multi-agent workflows, and deliberative alignment through chain of thought reasoning underscore AI safety and alignment efforts.
DeepSeek v3: 671B finegrained MoE trained for $5.5m USD of compute on 15T tokens
deepseek-v3 gpt-4o claude-3.5-sonnet llama-3 deepseek-ai hugging-face openai anthropic mixture-of-experts model-training model-optimization reinforcement-learning chain-of-thought multi-token-prediction synthetic-data model-distillation fine-tuning attention-mechanisms gpu-optimization nrehiew_ denny_zhou
DeepSeek-V3 has launched with 671B MoE parameters and trained on 14.8T tokens, outperforming GPT-4o and Claude-3.5-sonnet in benchmarks. It was trained with only 2.788M H800 GPU hours, significantly less than Llama-3's 30.8M GPU-hours, showcasing major compute efficiency and cost reduction. The model is open-source and deployed via Hugging Face with API support. Innovations include native FP8 mixed precision training, Multi-Head Latent Attention scaling, distillation from synthetic reasoning data, pruning and healing for MoEs with up to 256 experts, and a new multi-token prediction objective enabling lookahead token planning. Research highlights also cover the OREO method and Natural Language Reinforcement Learning (NLRL) for multi-step reasoning and agent control.
Stripe lets Agents spend money with StripeAgentToolkit
gpt-4o gemini-exp-1114 stripe openai anthropic meta-ai-fair ai-computer-interfaces agentic-ai model-overfitting benchmarks scaling-laws agi chain-of-thought image-captioning dialogue-systems memory-efficient-fine-tuning diffusion-models mixture-of-experts adaptive-decoding creativity-optimization factuality-optimization pair-programming document-parsing retrieval-augmented-generation abacaj francois-fleuret lmarena_ai goodside jxmnop jaseweston stevenheidel
Stripe has pioneered an AI SDK specifically designed for agents that handle payments, integrating with models like gpt-4o to enable financial transactions and token-based charging. The AI developer tooling trend emphasizes better "AI-Computer Interfaces" for improved agent reliability, with tools like E2B and the
llms.txt
documentation trend gaining traction, notably adopted by Anthropic. In AI model news, Gemini-Exp-1114 topped the Vision Leaderboard and improved in Math Arena, while discussions continue around model overfitting and the limits of scaling laws for AGI. OpenAI released a ChatGPT desktop app for macOS with integrations for VS Code, Xcode, and Terminal, enhancing developer workflows and pair programming. Anthropic introduced a prompt improver using chain-of-thought reasoning, and Meta AI shared top research from EMNLP2024 on image captioning, dialogue systems, and memory-efficient fine-tuning. Highlights from ICLR 2025 include diffusion-based illumination harmonization, open mixture-of-experts language models, and hyperbolic vision-language models. A new adaptive decoding method optimizes creativity and factuality per token. Tools like LlamaParse and RAGformation were also introduced for document parsing and retrieval-augmented generation. FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI
o1 claude-3.5-haiku gpt-4o epoch-ai openai microsoft anthropic x-ai langchainai benchmarking math moravecs-paradox mixture-of-experts chain-of-thought agent-framework financial-metrics-api pdf-processing few-shot-learning code-generation karpathy philschmid adcock_brett dylan522p
Epoch AI collaborated with over 60 leading mathematicians to create the FrontierMath benchmark, a fresh set of hundreds of original math problems with easy-to-verify answers, aiming to challenge current AI models. The benchmark reveals that all tested models, including o1, perform poorly, highlighting the difficulty of complex problem-solving and Moravec's paradox in AI. Key AI developments include the introduction of Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture reducing computational costs, and improvements in Chain-of-Thought (CoT) prompting through incorrect reasoning and explanations. Industry news covers OpenAI acquiring the chat.com domain, Microsoft launching the Magentic-One agent framework, Anthropic releasing Claude 3.5 Haiku outperforming gpt-4o on some benchmarks, and xAI securing 150MW grid power with support from Elon Musk and Trump. LangChain AI introduced new tools including a Financial Metrics API, Document GPT with PDF upload and Q&A, and LangPost AI agent for LinkedIn posts. xAI also demonstrated the Grok Engineer compatible with OpenAI and Anthropic APIs for code generation.
Tencent's Hunyuan-Large claims to beat DeepSeek-V2 and Llama3-405B with LESS Data
claude-3.5-haiku llama-3-1 llama-3-2 mlx-lm tencent anthropic meta-ai-fair togethercompute llamaindex mixture-of-experts synthetic-data model-scaling model-architecture model-optimization kv-cache-quantization react fine-tuning scaling-laws model-efficiency model-deployment multimodality
Tencent released a notable >300B parameter MoE model pretrained on 7T tokens, including 1.5T synthetic data generated via Evol-Instruct. The model introduces novel techniques like "recycle routing" and expert-specific learning rates, alongside a compute-efficient scaling law for MoE active parameters. However, its custom license restricts use in the EU and by companies with over 100M MAU, and it avoids China-sensitive queries. Meanwhile, Anthropic launched Claude 3.5 Haiku, now available on multiple platforms, praised for intelligence and speed but criticized for a 10x price increase. Meta opened Llama AI to the U.S. defense sector, and a Llama Impact Hackathon offers a $15K prize for projects using Llama 3.1 & 3.2 Vision. LlamaIndex released a React chat UI component with Tailwind CSS and LLM backend integrations. The MLX LM model advances text generation speed and efficiency with KV cache quantization.
not much happened today
aria o1-preview o1-mini gemini-1.5-pro gemini-1.5-flash gemini-1.5 claude-3.5-sonnet rhymes-ai openai anthropic google meta-ai-fair oxylabs multimodality mixture-of-experts long-context retrieval-augmented-generation benchmarking software-engineering llm-evaluation prompt-engineering web-scraping python production-applications mervenoyann osanseviero dbrxmosaicai ylecun ofirpress clefourrier omarsar0 rohanpaul_ai svpino finbarrtimbers _philschmid
Rhymes AI released Aria, a new 25.3B parameter multimodal MoE model supporting text, code, image, and video with a 64k token context window and Apache-2.0 license. OpenAI's o1-preview and o1-mini models show consistent improvement over Anthropic and Google Gemini 1.5 Pro/Flash on long context RAG benchmarks up to 128k tokens, while Google Gemini 1.5 models excel at extreme context lengths up to 2 million tokens. Meta AI expanded rollout to 21 countries with new language support but remains unavailable in the EU. The one-year anniversary of SWE-bench benchmark for software engineering tasks was celebrated, alongside the introduction of SWE-bench Multimodal. New AI tools include OxyCopilot by Oxylabs for web scraping, Taipy for Python-based production apps, and Latitude for prompt engineering. Industry insights highlight changing AI funding dynamics and OpenAI's strategic focus on consumer products like ChatGPT. "all recaps done by Claude 3.5 Sonnet, best of 4 runs."
Not much technical happened today
whisper-v3-turbo llama-3 llamaindex openai poolside liquidai perplexity-ai meta-ai-fair cohere fujitsu mixture-of-experts context-windows model-optimization fine-tuning quantization model-training alignment synthetic-data model-architecture agentic-ai nick-turley arav-srinivas francois-fleuret finbarr-timbers lewtun francois-chollet jerry-j-liu mmitchell-ai jxnlco
OpenAI announced raising $6.6B in new funding at a $157B valuation, with ChatGPT reaching 250M weekly active users. Poolside raised $500M to advance AGI development. LiquidAI introduced three new MoE models (1B, 3B, 40B) with a 32k context window and efficient token handling. OpenAI released Whisper V3 Turbo, an open-source multilingual model with significant speed improvements. Meta AI FAIR is hiring research interns focusing on LLM reasoning, alignment, synthetic data, and novel architectures. Cohere partnered with Fujitsu to launch Takane, a custom Japanese model. Technical discussions included challenges in LoRA fine-tuning, float8 quantization in Keras, and new tools like create-llama for agent templates. Industry commentary raised concerns about AI development priorities and highlighted freelancing opportunities in AI.
$1150m for SSI, Sakana, You.com + Claude 500m context
olmo llama2-13b-chat claude claude-3.5-sonnet safe-superintelligence sakana-ai you-com perplexity-ai anthropic ai2 mixture-of-experts model-architecture model-training gpu-costs retrieval-augmented-generation video-generation ai-alignment enterprise-ai agentic-ai command-and-control ilya-sutskever mervenoyann yuchenj_uw rohanpaul_ai ctojunior omarsar0
Safe Superintelligence raised $1 billion at a $5 billion valuation, focusing on safety and search approaches as hinted by Ilya Sutskever. Sakana AI secured a $100 million Series A funding round, emphasizing nature-inspired collective intelligence. You.com pivoted to a ChatGPT-like productivity agent after a $50 million Series B round, while Perplexity AI raised over $250 million this summer. Anthropic launched Claude for Enterprise with a 500 million token context window. AI2 released a 64-expert Mixture-of-Experts (MoE) model called OLMo, outperforming Llama2-13B-Chat. Key AI research trends include efficient MoE architectures, challenges in AI alignment and GPU costs, and emerging AI agents for autonomous tasks. Innovations in AI development feature command and control for video generation, Retrieval-Augmented Generation (RAG) efficiency, and GitHub integration under Anthropic's Enterprise plan. "Our logo is meant to invoke the idea of a school of fish coming together and forming a coherent entity from simple rules as we want to make use of ideas from nature such as evolution and collective intelligence in our research."
CogVideoX: Zhipu's Open Source Sora
cogvideox llama-3-1 llama-3-405b moondream phi-3.5 llama-rank zhipu-ai alibaba meta-ai-fair google hugging-face nvidia togethercompute salesforce video-generation serverless-computing vision document-vqa text-vqa mixture-of-experts retrieval-augmented-generation long-context model-routing webgpu background-removal long-form-generation superposition-prompting rohanpaul_ai philschmid vikhyatk algo_diver jayalammar davidsholz
Zhipu AI, Alibaba's AI arm and China's 3rd largest AI lab, released the open 5B video generation model CogVIdeoX, which can run without GPUs via their ChatGLM web and desktop apps. Meta AI announced trust & safety research and CyberSecEval 3 alongside the release of Llama 3.1, with Llama 3 405B now available serverless on Google Cloud Vertex AI and Hugging Face x NVIDIA NIM API. Updates include Moondream, an open vision-language model improving DocVQA and TextVQA tasks, and the lightweight MoE chat model Phi-3.5 with 16x3.8B parameters. Together Compute introduced the Rerank API featuring Salesforce's LlamaRank model for document and code ranking. Research highlights include superposition prompting for RAG without fine-tuning, the AgentWrite pipeline for long-form content generation over 20,000 words, and a comparison showing Long Context methods outperform RAG at higher costs. Tools include Not Diamond, an AI model router, AI command line interfaces, and an open-source WebGPU background removal tool. "You don't even need GPUs to run it," referring to CogVIdeoX.
Nvidia Minitron: LLM Pruning and Distillation updated for Llama 3.1
llama-3-1-8b llama-3-1 jamba-1.5 claude-3 dracarys-70b dracarys-72b mistral-nemo-minitron-8b mistral-7b nvidia meta-ai-fair ai21-labs anthropic hugging-face pruning knowledge-distillation weight-pruning activation-based-pruning width-pruning kl-divergence teacher-correction prompt-optimization multilinguality long-context mixture-of-experts model-fine-tuning
Nvidia and Meta researchers updated their Llama 3 results with a paper demonstrating the effectiveness of combining weight pruning and knowledge distillation to reduce training costs by training only the largest model from scratch and deriving smaller models via pruning and distillation. The process involves teacher correction, activation-based pruning (favoring width pruning), and retraining with distillation using KL Divergence loss, resulting in better-performing models at comparable sizes. However, distillation incurs some accuracy tradeoffs. Additionally, AI21 Labs launched Jamba 1.5, a hybrid SSM-Transformer MoE model with large context windows and multilingual support. Anthropic updated Claude 3 with LaTeX rendering and prompt caching. An open-source coding-focused LLM, Dracarys, was released in 70B and 72B sizes, showing improved coding performance. The Mistral Nemo Minitron 8B model outperforms Llama 3.1 8B and Mistral 7B on the Hugging Face leaderboard, highlighting pruning and distillation benefits. Research on prompt optimization reveals the complexity of prompt search spaces and the surprising effectiveness of simple algorithms like AutoPrompt/GCG.
GPT4o August + 100% Structured Outputs for All (GPT4o August edition)
gpt-4o-2024-08-06 llama-3-1-405b llama-3 claude-3.5-sonnet gemini-1.5-pro gpt-4o yi-large-turbo openai meta-ai-fair google-deepmind yi-large nvidia groq langchain jamai langsmith structured-output context-windows model-pricing benchmarking parameter-efficient-expert-retrieval retrieval-augmented-generation mixture-of-experts model-performance ai-hardware model-deployment filtering multi-lingual vision john-carmack jonathan-ross rohanpaul_ai
OpenAI released the new gpt-4o-2024-08-06 model with 16k context window and 33-50% lower pricing than the previous 4o-May version, featuring a new Structured Output API that improves output quality and reduces retry costs. Meta AI launched Llama 3.1, a 405-billion parameter model surpassing GPT-4 and Claude 3.5 Sonnet on benchmarks, alongside expanding the Llama Impact Grant program. Google DeepMind quietly released Gemini 1.5 Pro, outperforming GPT-4o, Claude-3.5, and Llama 3.1 on LMSYS benchmarks and leading the Vision Leaderboard. Yi-Large Turbo was introduced as a cost-effective upgrade priced at $0.19 per million tokens. In hardware, NVIDIA H100 GPUs were highlighted by John Carmack for their massive AI workload power, and Groq announced plans to deploy 108,000 LPUs by Q1 2025. New AI tools and techniques include RAG (Retrieval-Augmented Generation), the JamAI Base platform for Mixture of Agents systems, and LangSmith's enhanced filtering capabilities. Google DeepMind also introduced PEER (Parameter Efficient Expert Retrieval) architecture.
Microsoft AgentInstruct + Orca 3
mistral-7b orca-2.5 microsoft-research apple tencent hugging-face synthetic-data fine-tuning instruction-following transformers model-performance hallucination-detection dataset-quality flashattention mixture-of-experts philschmid sama bindureddy rohanpaul_ai zachtratar dair_ai
Microsoft Research released AgentInstruct, the third paper in its Orca series, introducing a generative teaching pipeline that produces 25.8 million synthetic instructions to fine-tune mistral-7b, achieving significant performance gains: +40% AGIEval, +19% MMLU, +54% GSM8K, +38% BBH, +45% AlpacaEval, and a 31.34% reduction in hallucinations. This synthetic data approach follows the success of FineWeb and Apple's Rephrasing research in improving dataset quality. Additionally, Tencent claims to have generated 1 billion diverse personas for synthetic data. On AI Twitter, notable discussions included a shooting incident at a Trump rally and recent ML research highlights such as FlashAttention-3, RankRAG, and Mixture of A Million Experts.
RouteLLM: RIP Martian? (Plus: AINews Structured Summaries update)
gpt-4 gemma-2-27b gemma-2-9b lmsys openai llm-routing cost-efficiency model-performance model-optimization data-augmentation syntax-based-routing mixture-of-experts inference-throughput software-2.0 computer-vision karpathy bindureddy armand-joulin
LMSys introduces RouteLLM, an open-source router framework trained on preference data from Chatbot Arena, achieving cost reductions over 85% on MT Bench, 45% on MMLU, and 35% on GSM8K while maintaining 95% of GPT-4's performance. This approach surpasses previous task-specific routing by using syntax-based Mixture of Experts (MoE) routing and data augmentation, beating commercial solutions by 40%. The update highlights advances in LLM routing, cost-efficiency, and model performance optimization across multiple models rather than single-model or MoE-level improvements. Additionally, the AI Twitter recap notes the Gemma 2 model family as a top open model, the Block Transformer architecture for improved inference throughput, and a proposal for a fully Software 2.0 computer vision system by karpathy.
Hybrid SSM/Transformers > Pure SSMs/Pure Transformers
mamba-2-hybrid gpt-4 qwen-72b table-llava-7b nvidia lamini-ai sakana-ai luma-labs mixture-of-experts benchmarking fine-tuning multimodality text-to-video model-performance memory-optimization preference-optimization video-understanding multimodal-tables bryan-catanzaro bindureddy ylecun ctnzr corbtt realsharonzhou andrew-n-carr karpathy _akhaliq omarsar0
NVIDIA's Bryan Catanzaro highlights a new paper on Mamba models, showing that mixing Mamba and Transformer blocks outperforms either alone, with optimal attention below 20%. Mixture-of-Agents (MoA) architecture improves LLM generation quality, scoring 65.1% on AlpacaEval 2.0 versus GPT-4 Omni's 57.5%. The LiveBench AI benchmark evaluates reasoning, coding, writing, and data analysis. A hybrid Mamba-2-Hybrid model with 7% attention surpasses a Transformer on MMLU accuracy, jumping from 50% to 53.6%. GPT-4 performs better at temperature=1. Qwen 72B leads open-source models on LiveBench AI. LaminiAI Memory Tuning achieves 95% accuracy on a SQL agent task, improving over instruction fine-tuning. Sakana AI Lab uses evolutionary strategies for preference optimization. Luma Labs Dream Machine demonstrates advanced text-to-video generation. The MMWorld benchmark evaluates multimodal video understanding, and Table-LLaVa 7B competes with GPT-4V on multimodal table tasks.
Francois Chollet launches $1m ARC Prize
gpt-4 chatgpt openai apple togethercompute benchmarking agi pattern-recognition skill-acquisition privacy on-device-ai mixed-precision-quantization mixture-of-experts multimodality agentic-ai francois-chollet karpathy svpino philschmid clementdelangue sama gdb miramurati kevin-weil sarah-friar
François Chollet critiques current paths to AGI, emphasizing the importance of benchmarks that resist saturation and focus on skill acquisition and open-ended problem solving. The ARC-AGI puzzles exemplify "easy for humans, hard for AI" challenges to measure progress toward AGI. Meanwhile, Apple announces integration of ChatGPT into iOS, iPadOS, and macOS through a partnership with OpenAI, enabling AI-powered features like document summarization and photo analysis with privacy-preserving measures. Discussions highlight Apple's focus on deep AI integration and on-device models optimized with techniques like mixed-precision quantization, though some skepticism remains about their AI capabilities compared to GPT-4. Additionally, Together Compute introduces a Mixture of Agents approach achieving strong performance on AlpacaEval 2.0.
Skyfall
gemini-1.5-pro gemini-1.5-flash yi-1.5 kosmos-2.5 paligemma falcon-2 deepseek-v2 hunyuan-dit gemini-1.5 gemini-1.5-flash yi-1.5 google-deepmind yi-ai microsoft hugging-face langchain maven multimodality mixture-of-experts transformer model-optimization long-context model-performance model-inference fine-tuning local-ai scaling-laws causal-models hallucination-detection model-distillation model-efficiency hamel-husain dan-becker clement-delangue philschmid osanseviero arankomatsuzaki jason-wei rohanpaul_ai
Between 5/17 and 5/20/2024, key AI updates include Google DeepMind's Gemini 1.5 Pro and Flash models, featuring sparse multimodal MoE architecture with up to 10M context and a dense Transformer decoder that is 3x faster and 10x cheaper. Yi AI released Yi-1.5 models with extended context windows of 32K and 16K tokens. Other notable releases include Kosmos 2.5 (Microsoft), PaliGemma (Google), Falcon 2, DeepSeek v2 lite, and HunyuanDiT diffusion model. Research highlights feature an Observational Scaling Laws paper predicting model performance across families, a Layer-Condensed KV Cache technique boosting inference throughput by up to 26×, and the SUPRA method converting LLMs into RNNs for reduced compute costs. Hugging Face expanded local AI capabilities enabling on-device AI without cloud dependency. LangChain updated its v0.2 release with improved documentation. The community also welcomed a new LLM Finetuning Discord by Hamel Husain and Dan Becker for Maven course users. "Hugging Face is profitable, or close to profitable," enabling $10 million in free shared GPUs for developers.
GPT-4o: the new SOTA-EVERYTHING Frontier model (GPT4T version)
gpt-4o gpt-3.5 llama-3 openai hugging-face nous-research eleutherai hazyresearch real-time-reasoning coding-capabilities fine-tuning knowledge-distillation hardware-optimization quantization multimodality mixture-of-experts efficient-attention model-scaling depth-upscaling transformer-architecture gpu-optimization prompt-engineering
OpenAI launched GPT-4o, a frontier model supporting real-time reasoning across audio, vision, and text, now free for all ChatGPT users with enhanced coding capabilities and upcoming advanced voice and video features. Discussions cover open-source LLMs like Llama 3, fine-tuning techniques including knowledge distillation for GPT-3.5, and hardware optimization strategies such as quantization. Emerging architectures include multimodal integrations with ChatGPT voice and Open Interpreter API, Mixture of Experts models combining autoregressive and diffusion approaches, and novel designs like the YOCO architecture and ThunderKittens DSL for efficient GPU use. Research advances in efficient attention methods like Conv-Basis using FFT and model scaling techniques such as depth upscaling were also highlighted.
DeepSeek-V2 beats Mixtral 8x22B with >160 experts at HALF the cost
deepseek-v2 llama-3-120b llama-3-400b gpt-4 mistral phi claude gemini mai-1 med-gemini deepseek-ai mistral-ai microsoft openai scale-ai tesla nvidia google-deepmind mixture-of-experts multi-head-attention model-inference benchmarking overfitting robotics teleoperation open-source multimodality hallucination-detection fine-tuning medical-ai model-training erhartford maximelabonne bindureddy adcock_brett drjimfan clementdelangue omarsar0 rohanpaul_ai
DeepSeek V2 introduces a new state-of-the-art MoE model with 236B parameters and a novel Multi-Head Latent Attention mechanism, achieving faster inference and surpassing GPT-4 on AlignBench. Llama 3 120B shows strong creative writing skills, while Microsoft is reportedly developing a 500B parameter LLM called MAI-1. Research from Scale AI highlights overfitting issues in models like Mistral and Phi, whereas GPT-4, Claude, Gemini, and Llama maintain benchmark robustness. In robotics, Tesla Optimus advances with superior data collection and teleoperation, LeRobot marks a move toward open-source robotics AI, and Nvidia's DrEureka automates robot skill training. Multimodal LLM hallucinations are surveyed with new mitigation strategies, and Google's Med-Gemini achieves SOTA on medical benchmarks with fine-tuned multimodal models.
Snowflake Arctic: Fully Open 10B+128x4B Dense-MoE Hybrid LLM
snowflake-arctic phi-3 llama-3-70b llama-3 stable-diffusion-3 sd3-turbo gpt-3.5-turbo snowflake databricks deepseek deepspeed nvidia stable-diffusion adobe apple llamaindex lmsys openai mixture-of-experts curriculum-learning model-release image-generation video-upscaling quantization inference-speed benchmarking model-comparison open-source on-device-ai
Snowflake Arctic is a notable new foundation language model released under Apache 2.0, claiming superiority over Databricks in data warehouse AI applications and adopting a mixture-of-experts architecture inspired by DeepSeekMOE and DeepSpeedMOE. The model employs a 3-stage curriculum training strategy similar to the recent Phi-3 paper. In AI image and video generation, Nvidia introduced the Align Your Steps technique improving image quality at low step counts, while Stable Diffusion 3 and SD3 Turbo models were compared for prompt understanding and image quality. Adobe launched an AI video upscaling project enhancing blurry videos to HD, though with some high-resolution artifacts. Apple released open-source on-device language models with code and training logs, diverging from typical weight-only releases. The Llama-3-70b model ties for first place on the LMSYS leaderboard for English queries, and Phi-3 (4B params) outperforms GPT-3.5 Turbo in the banana logic benchmark. Fast inference and quantization of Llama 3 models were demonstrated on MacBook devices.
Mixture of Depths: Dynamically allocating compute in transformer-based language models
octopus-v2 deepmind transformer-efficiency dynamic-compute-allocation mixture-of-experts mixture-of-depths top-k-routing algorithmic-reasoning visual-autoregressive-modeling on-device-models function-calling scaling-laws piotrpadlewski
DeepMind introduces the Mixture-of-Depths (MoD) technique, dynamically allocating FLOPs across transformer layers to optimize compute usage, achieving over 50% faster forward passes without training impact. MoD selectively processes tokens using top-k routing, improving efficiency and potentially enabling faster ultra-long context handling. The method can combine with Mixture-of-Experts (MoE) for decoupled routing of queries, keys, and values. Reddit discussions highlight concerns about LLM hype overshadowing other AI tech, improvements in transformer efficiency, a new Think-and-Execute framework boosting algorithmic reasoning by 10-20%, and Visual Autoregressive modeling (VAR) surpassing diffusion models in image quality and speed. On-device model Octopus v2 outperforms GPT-4 in function calling accuracy and latency.
Not much happened today
jamba-v0.1 command-r gpt-3.5-turbo openchat-3.5-0106 mixtral-8x7b mistral-7b midnight-miqu-70b-v1.0.q5_k_s cohere lightblue openai mistral-ai nvidia amd hugging-face ollama rag mixture-of-experts model-architecture model-analysis debate-persuasion hardware-performance gpu-inference cpu-comparison local-llm stable-diffusion ai-art-bias
RAGFlow open sourced, a deep document understanding RAG engine with 16.3k context length and natural language instruction support. Jamba v0.1, a 52B parameter MoE model by Lightblue, released but with mixed user feedback. Command-R from Cohere available on Ollama library. Analysis of GPT-3.5-Turbo architecture reveals about 7 billion parameters and embedding size of 4096, comparable to OpenChat-3.5-0106 and Mixtral-8x7B. AI chatbots, including GPT-4, outperform humans in debates on persuasion. Mistral-7B made amusing mistakes on a math riddle. Hardware highlights include a discounted HGX H100 640GB machine with 8 H100 GPUs bought for $58k, and CPU comparisons between Epyc 9374F and Threadripper 1950X for LLM inference. GPU recommendations for local LLMs focus on VRAM and inference speed, with users testing 4090 GPU and Midnight-miqu-70b-v1.0.q5_k_s model. Stable Diffusion influences gaming habits and AI art evaluation shows bias favoring human-labeled art.
Jamba: Mixture of Architectures dethrones Mixtral
jamba dbrx mixtral animatediff fastsd sdxs512-0.9 b-lora supir ai21-labs databricks together-ai hugging-face midjourney mixture-of-experts model-architecture context-windows model-optimization fine-tuning image-generation video-generation cpu-optimization style-content-separation high-resolution-upscaling
AI21 labs released Jamba, a 52B parameter MoE model with 256K context length and open weights under Apache 2.0 license, optimized for single A100 GPU performance. It features a unique blocks-and-layers architecture combining transformer and MoE layers, competing with models like Mixtral. Meanwhile, Databricks introduced DBRX, a 36B active parameter MoE model trained on 12T tokens, noted as a new standard for open LLMs. In image generation, advancements include Animatediff for video-quality image generation and FastSD CPU v1.0.0 beta 28 enabling ultra-fast image generation on CPUs. Other innovations involve style-content separation using B-LoRA and improvements in high-resolution image upscaling with SUPIR.
DBRX: Best open model (just not most efficient)
dbrx grok mixtral llama-2 mpt-7b gpt-4 databricks hugging-face mistral-ai mosaicml openai mixture-of-experts model-efficiency tokenization model-training code-generation model-architecture open-source-models benchmarking fine-tuning
Databricks Mosaic has released a new open-source model called DBRX that outperforms Grok, Mixtral, and Llama2 on evaluations while being about 2x more efficient than Llama2 and Grok. The model was trained on 12 trillion tokens using 3,000 H100 GPUs over 2 months, with an estimated compute cost of $10 million. It uses OpenAI's 100k tiktoken tokenizer and shows strong zero-shot code generation performance, even beating GPT-4 on the Humaneval benchmark. DBRX also upstreamed work to MegaBlocks open source. Despite its scale and efficiency, DBRX's performance on MMLU is only slightly better than Mixtral, raising questions about its scaling efficiency. The focus of DBRX is on enabling users to train models efficiently, with MoE training being about 2x more FLOP-efficient than dense models, achieving similar quality with nearly 4x less compute than previous MPT models. This release is part of the ongoing competition for open-source AI leadership, including models like Dolly, MPT, and Mistral. "If it activates 36B params, the model's perf should be equivalent to a 72B dense model or even 80B," says Qwen's tech lead.
Grok-1 in Bio
grok-1 mixtral miqu-70b claude-3-opus claude-3 claude-3-haiku xai mistral-ai perplexity-ai groq anthropic openai mixture-of-experts model-release model-performance benchmarking finetuning compute hardware-optimization mmlu model-architecture open-source memes sam-altman arthur-mensch daniel-han arav-srinivas francis-yao
Grok-1, a 314B parameter Mixture-of-Experts (MoE) model from xAI, has been released under an Apache 2.0 license, sparking discussions on its architecture, finetuning challenges, and performance compared to models like Mixtral and Miqu 70B. Despite its size, its MMLU benchmark performance is currently unimpressive, with expectations that Grok-2 will be more competitive. The model's weights and code are publicly available, encouraging community experimentation. Sam Altman highlighted the growing importance of compute resources, while Grok's potential deployment on Groq hardware was noted as a possible game-changer. Meanwhile, Anthropic's Claude continues to attract attention for its "spiritual" interaction experience and consistent ethical framework. The release also inspired memes and humor within the AI community.
Not much happened piday
claude-3-haiku deepmind anthropic cohere embodied-ai-agents natural-language-instructions language-model-scaling mixture-of-experts retrieval-augmented-generation software-engineering ai-regulation differential-privacy privacy-preserving-learning humor demis-hassabis fchollet abacaj andrej-karpathy
DeepMind announces SIMA, a generalist AI agent capable of following natural language instructions across diverse 3D environments and video games, advancing embodied AI agents. Anthropic releases Claude 3 Haiku, their fastest and most affordable model, now available via API and Perplexity. New research explores language model scaling laws, over-training, and introduces Branch-Train-MiX (BTX) for efficient training of large language models using mixture-of-experts. Predictions suggest software engineering jobs will grow to 30-35 million in five years, aided by AI coding assistants like Cohere's Command-R focusing on retrieval-augmented generation and tool use. The EU AI Act is approved, mandating transparency in training data for GPAI systems. Privacy-preserving in-context learning with differential privacy is highlighted as promising work. Memes humorously discuss AI software engineers and notable figures like Andrej Karpathy.
Nightshade poisons AI art... kinda?
mistral-7b falcon-7b mistral-ai hugging-face mixture-of-experts gpu-parallelism quantization fine-tuning model-merging ai-detection role-playing benchmarking
Over the weekend of 1/19-20/2024, discussions in TheBloke Discord covered key topics including Mixture of Experts (MoE) model efficiency, GPU parallelism, and quantization strategies. Users debated the effectiveness of AI detection tools like GPTZero and explored fine-tuning challenges with models such as Mistral 7B and Falcon 7B. Community interest was strong in developing simpler, community-powered quantization services and understanding model merging techniques. Ethical considerations around AI applications like AI girlfriend sites were also discussed.
Sama says: GPT-5 soon
gpt-5 mixtral-7b gpt-3.5 gemini-pro gpt-4 llama-cpp openai codium thebloke amd hugging-face mixture-of-experts fine-tuning model-merging 8-bit-optimization gpu-acceleration performance-comparison command-line-ai vector-stores embeddings coding-capabilities sam-altman ilya-sutskever itamar andrej-karpathy
Sam Altman at Davos highlighted that his top priority is launching the new model, likely called GPT-5, while expressing uncertainty about Ilya Sutskever's employment status. Itamar from Codium introduced the concept of Flow Engineering with AlphaCodium, gaining attention from Andrej Karpathy. On the TheBloke Discord, engineers discussed a multi-specialty mixture-of-experts (MOE) model combining seven distinct 7 billion parameter models specialized in law, finance, and medicine. Debates on 8-bit fine-tuning and the use of bitsandbytes with GPU support were prominent. Discussions also covered model merging using tools like Mergekit and compatibility with Alpaca format. Interest in optimizing AI models on AMD hardware using AOCL blas and lapack libraries with llama.cpp was noted. Users experimented with AI for command line tasks, and the Mixtral MoE model was refined to surpass larger models in coding ability. Comparisons among LLMs such as GPT-3.5, Mixtral, Gemini Pro, and GPT-4 focused on knowledge depth, problem-solving, and speed, especially for coding tasks.
1/16/2024: TIES-Merging
mixtral-8x7b nous-hermes-2 frankendpo-4x7b-bf16 thebloke hugging-face nous-research togethercompute oak-ridge-national-laboratory vast-ai runpod mixture-of-experts random-gate-routing quantization gptq exl2-quants reinforcement-learning-from-human-feedback supercomputing trillion-parameter-models ghost-attention model-fine-tuning reward-models sanjiwatsuki superking__ mrdragonfox _dampf kaltcit rombodawg technotech
TheBloke's Discord community actively discusses Mixture of Experts (MoE) models, focusing on random gate routing layers for training and the challenges of immediate model use. There is a robust debate on quantization methods, comparing GPTQ and EXL2 quants, with EXL2 noted for faster execution on specialized hardware. A new model, Nous Hermes 2, based on Mixtral 8x7B and trained with RLHF, claims benchmark superiority but shows some inconsistencies. The Frontier supercomputer at Oak Ridge National Laboratory is highlighted for training a trillion-parameter LLM with 14TB RAM, sparking discussions on open-sourcing government-funded AI research. Additionally, the application of ghost attention in the academicat model is explored, with mixed reactions from the community. "Random gate layer is good for training but not for immediate use," and "EXL2 might offer faster execution on specialized hardware," are key insights shared.
1/13-14/2024: Don't sleep on #prompt-engineering
The OpenAI Discord community engaged in diverse discussions including prompt engineering techniques like contrastive Chain of Thought and step back prompting, and explored model merging and mixture-of-experts (MoE) concepts. Philosophical debates on AI consciousness and the ethics of AI-generated voices highlighted concerns about AI sentience and copyright issues. Technical clarifications were made on hyperdimensional vector space models used in modern AI embeddings. Users also discussed customizing GPT with personality profiles and prompt personalization to overcome token limits, and proposed a universal translator feature for multilingual Discord interactions. Key contributors included longtime regular MadameArchitect and community members such as @darthgustav and @metaldrgn.
1/11/2024: Mixing Experts vs Merging Models
gpt-4-turbo gpt-4-0613 mixtral deepseekmoe phixtral deepseek-ai hugging-face nous-research teenage-engineering discord mixture-of-experts model-merging fine-tuning rag security discord-tos model-performance prompt-engineering function-calling semantic-analysis data-frameworks ash_prabaker shacrw teknium 0xevil everyoneisgross ldj pramod8481 mgreg_42266 georgejrjrjr kenakafrosty
18 guilds, 277 channels, and 1342 messages were analyzed with an estimated reading time saved of 187 minutes. The community switched to GPT-4 turbo and discussed the rise of Mixture of Experts (MoE) models like Mixtral, DeepSeekMOE, and Phixtral. Model merging techniques, including naive linear interpolation and "frankenmerges" by SOLAR and Goliath, are driving new performance gains on open leaderboards. Discussions in the Nous Research AI Discord covered topics such as AI playgrounds supporting prompt and RAG parameters, security concerns about third-party cloud usage, debates on Discord bots and TOS, skepticism about Teenage Engineering's cloud LLM, and performance differences between GPT-4 0613 and GPT-4 turbo. The community also explored fine-tuning strategies involving DPO, LoRA, and safetensors, integration of RAG with API calls, semantic differences between MoE and dense LLMs, and data frameworks like llama index and SciPhi-AI's synthesizer. Issues with anomalous characters in fine-tuning were also raised.
1/8/2024: The Four Wars of the AI Stack
mixtral mistral nous-research openai mistral-ai hugging-face context-window distributed-models long-context hierarchical-embeddings agentic-rag fine-tuning synthetic-data oil-and-gas embedding-datasets mixture-of-experts model-comparison
The Nous Research AI Discord discussions highlighted several key topics including the use of DINO, CLIP, and CNNs in the Obsidian Project. A research paper on distributed models like DistAttention and DistKV-LLM was shared to address cloud-based LLM service challenges. Another paper titled 'Self-Extend LLM Context Window Without Tuning' argued that existing LLMs can handle long contexts inherently. The community also discussed AI models like Mixtral, favored for its 32k context window, and compared it with Mistral and Marcoroni. Other topics included hierarchical embeddings, agentic retrieval-augmented generation (RAG), synthetic data for fine-tuning, and the application of LLMs in the oil & gas industry. The launch of the AgentSearch-V1 dataset with one billion embedding vectors was also announced. The discussions covered mixture-of-experts (MoE) implementations and the performance of smaller models.
12/12/2023: Towards LangChain 0.1
mixtral-8x7b phi-2 gpt-3 chatgpt gpt-4 langchain mistral-ai anthropic openai microsoft mixture-of-experts information-leakage prompt-engineering oauth2 logo-generation education-ai gaming-ai api-access model-maintainability scalability
The Langchain rearchitecture has been completed, splitting the repo for better maintainability and scalability, while remaining backwards compatible. Mistral launched a new Discord community, and Anthropic is rumored to be raising another $3 billion. On the OpenAI Discord, discussions covered information leakage in AI training, mixture of experts (MoE) models like mixtral 8x7b, advanced prompt engineering techniques, and issues with ChatGPT performance and API access. Users also explored AI applications in logo generation, education, and gaming, and shared solutions for Oauth2 authentication problems. A new small language model named Phi-2 was mentioned from Microsoft.
12/10/2023: not much happened today
mixtral-8x7b-32kseqlen mistral-7b stablelm-zephyr-3b openhermes-2.5-neural-chat-v3-3-slerp gpt-3.5 gpt-4 nous-research openai mistral-ai hugging-face ollama lm-studio fine-tuning mixture-of-experts model-benchmarking inference-optimization model-evaluation open-source decentralized-ai gpu-optimization community-engagement andrej-karpathy yann-lecun richard-blythman gabriel-syme pradeep1148 cyborg_1552
Nous Research AI Discord community discussed attending NeurIPS and organizing future AI events in Australia. Highlights include interest in open-source and decentralized AI projects, with Richard Blythman seeking co-founders. Users shared projects like Photo GPT AI and introduced StableLM Zephyr 3B. The Mixtral model, based on Mistral, sparked debate on performance and GPU requirements, with comparisons to GPT-3.5 and potential competitiveness with GPT-4 after fine-tuning. Tools like Tensorboard, Wandb, and Llamahub were noted for fine-tuning and evaluation. Discussions covered Mixture of Experts (MoE) architectures, fine-tuning with limited data, and inference optimization strategies for ChatGPT. Memes and community interactions referenced AI figures like Andrej Karpathy and Yann LeCun. The community also shared resources such as GitHub links and YouTube videos related to these models and tools.
12/8/2023 - Mamba v Mistral v Hyena
mistral-8x7b-moe mamba-3b stripedhyena-7b claude-2.1 gemini gpt-4 dialogrpt-human-vs-machine cybertron-7b-v2-gguf falcon-180b mistral-ai togethercompute stanford anthropic google hugging-face mixture-of-experts attention-mechanisms prompt-engineering alignment image-training model-deployment gpu-requirements cpu-performance model-inference long-context model-evaluation open-source chatbots andrej-karpathy tri-dao maxwellandrews raddka
Three new AI models are highlighted: Mistral's 8x7B MoE model (Mixtral), Mamba models up to 3B by Together, and StripedHyena 7B, a competitive subquadratic attention model from Stanford's Hazy Research. Discussions on Anthropic's Claude 2.1 focus on its prompting technique and alignment challenges. The Gemini AI from Google is noted as potentially superior to GPT-4. The community also explores Dreambooth for image training and shares resources like the DialogRPT-human-vs-machine model on Hugging Face. Deployment challenges for large language models, including CPU performance and GPU requirements, are discussed with references to Falcon 180B and transformer batching techniques. User engagement includes meme sharing and humor.