All tags
Topic: "model-optimization"
Kimi K2 - SOTA Open MoE proves that Muon can scale to 15T tokens/1T params
kimi-k2 kimi-k2-1t deepseek-v3 grok-4 devstral-2507 gpt-4.1 sonnet-4 moonshot-ai alibaba tencent deepseek x-ai mistral-ai weights-biases hugging-face mixture-of-experts model-training model-optimization optimizer benchmarking long-context model-performance open-weights model-release yuchenj_uw andrew_n_carr scaling01 novita_labs teknium1 aravsrinivas mparakhin simonw
Moonshot AI has released Kimi K2, a 1 trillion parameter Mixture-of-Experts model trained on 15.5 trillion tokens using the new MuonClip optimizer, achieving state-of-the-art results on benchmarks like SWE-Bench Verified (65.8%) and TAU2 (58.4%). This model is competitive with GPT-4.1 and Sonnet 4 on non-thinking tasks and is available under an MIT license. Meanwhile, xAI announced Grok-4, noted for its "LEAST censored frontier model" status and strong long-context performance but criticized for rushed post-training. Mistral AI updated its Devstral 2507 models with improved performance and cost efficiency. The community is excited about the potential of the MuonClip optimizer, which may surpass the long-standing AdamW optimizer in machine learning.
not much happened today
o3-mini o1-mini llama hunyuan-a13b ernie-4.5 ernie-4.5-21b-a3b qwen3-30b-a3b gemini-2.5-pro meta-ai-fair openai tencent microsoft baidu gemini superintelligence ai-talent job-market open-source-models multimodality mixture-of-experts quantization fp8-training model-benchmarking model-performance model-releases api model-optimization alexandr_wang shengjia_zhao jhyuxm ren_hongyu shuchaobi saranormous teortaxesTex mckbrando yuchenj_uw francoisfleuret quanquangu reach_vb philschmid
Meta has poached top AI talent from OpenAI, including Alexandr Wang joining as Chief AI Officer to work towards superintelligence, signaling a strong push for the next Llama model. The AI job market shows polarization with high demand and compensation for top-tier talent, while credentials like strong GitHub projects gain importance. The WizardLM team moved from Microsoft to Tencent to develop open-source models like Hunyuan-A13B, highlighting shifts in China's AI industry. Rumors suggest OpenAI will release a new open-source model in July, potentially surpassing existing ChatGPT models. Baidu open-sourced multiple variants of its ERNIE 4.5 model series, featuring advanced techniques like 2-bit quantization, MoE router orthogonalization loss, and FP8 training, with models ranging from 0.3B to 424B parameters. Gemini 2.5 Pro returned to the free tier of the Gemini API, enabling developers to explore its features.
OpenAI releases Deep Research API (o3/o4-mini)
o3-deep-research o4-mini-deep-research gemma-3n flux-1-kontext-dev gpt-4o alphagenome openai google black-forest-labs deepmind sakana-ai higgsfield-ai huggingface ollama multimodality model-releases agentic-ai reinforcement-learning instruction-following model-architecture model-optimization image-generation biological-ai multi-agent-systems model-integration demishassabis hardmaru osanseviero clementdelangue
OpenAI has launched the Deep Research API featuring powerful models o3-deep-research and o4-mini-deep-research with native support for MCP, Search, and Code Interpreter, enabling advanced agent capabilities including multi-agent setups. Google released Gemma 3n, a multimodal model optimized for edge devices with only 3GB RAM, achieving a top score of 1300 on LMSys Arena, featuring the new MatFormer architecture and broad ecosystem integration. Black Forest Labs introduced FLUX.1 Kontext [dev], a 12B parameter rectified flow transformer for instruction-based image editing, comparable to GPT-4o. DeepMind unveiled AlphaGenome, an AI model capable of reading 1 million DNA bases for gene function prediction, marking a breakthrough in AI biology. Sakana AI presented Reinforcement-Learned Teachers (RLTs) to enhance LLM reasoning, achieving 86.1% on MiniF2F with efficient compute. Higgsfield AI released Higgsfield Soul, a high-aesthetic photo model with 50+ presets for fashion-grade realism. Additionally, Google launched the Gemini CLI, an open-source AI agent for terminal use with free Gemini 2.5 Pro requests.
not much happened today
dots-llm1 qwen3-235b xiaohongshu rednote-hilab deepseek huggingface mixture-of-experts open-source model-benchmarking fine-tuning inference context-windows training-data model-architecture model-performance model-optimization
China's Xiaohongshu (Rednote) released dots.llm1, a 142B parameter open-source Mixture-of-Experts (MoE) language model with 14B active parameters and a 32K context window, pretrained on 11.2 trillion high-quality, non-synthetic tokens. The model supports efficient inference frameworks like Docker, HuggingFace, and vLLM, and provides intermediate checkpoints every 1 trillion tokens, enabling flexible fine-tuning. Benchmarking claims it slightly surpasses Qwen3 235B on MMLU, though some concerns exist about benchmark selection and synthetic data verification. The release is notable for its truly open-source licensing and no synthetic data usage, sparking community optimism for support in frameworks such as llama.cpp and mlx.
Mary Meeker is so back: BOND Capital AI Trends report
qwen-3-8b anthropic hugging-face deepseek attention-mechanisms inference arithmetic-intensity transformers model-optimization interpretability model-quantization training tri_dao fleetwood___ teortaxestex awnihannun lateinteraction neelnanda5 eliebakouch _akhaliq
Mary Meeker returns with a comprehensive 340-slide report on the state of AI, highlighting accelerating tech cycles, compute growth, and comparisons of ChatGPT to early Google and other iconic tech products. The report also covers enterprise traction and valuation of major AI companies. On Twitter, @tri_dao discusses an "ideal" inference architecture featuring attention variants like GTA, GLA, and DeepSeek MLA with high arithmetic intensity (~256), improving efficiency and model quality. Other highlights include the release of 4-bit DWQ of DSR1 Qwen3 8B on Hugging Face, AnthropicAI's open-source interpretability tools for LLMs, and discussions on transformer training and abstractions by various researchers.
not much happened today
deepseek-r1-0528 pali-gemma-2 gemma-3 shieldgemma-2 txgemma gemma-3-qat gemma-3n-preview medgemma dolphingemma signgemma claude-4 opus-4 claude-sonnet-4 codestral-embed bagel qwen nemotron-cortexa gemini-2.5-pro deepseek-ai huggingface gemma claude bytedance qwen nemotron sakana-ai-labs benchmarking model-releases multimodality code-generation model-performance long-context reinforcement-learning model-optimization open-source yuchenj_uw _akhaliq clementdelangue osanseviero alexalbert__ guillaumelample theturingpost lmarena_ai epochairesearch scaling01 nrehiew_ ctnzr
DeepSeek R1 v2 model released with availability on Hugging Face and inference partners. The Gemma model family continues prolific development including PaliGemma 2, Gemma 3, and others. Claude 4 and its variants like Opus 4 and Claude Sonnet 4 show top benchmark performance, including new SOTA on ARC-AGI-2 and WebDev Arena. Codestral Embed introduces a 3072-dimensional code embedder. BAGEL, an open-source multimodal model by ByteDance, supports reading, reasoning, drawing, and editing with long mixed contexts. Benchmarking highlights include Nemotron-CORTEXA topping SWEBench and Gemini 2.5 Pro performing on VideoGameBench. Discussions on random rewards effectiveness focus on Qwen models. "Opus 4 NEW SOTA ON ARC-AGI-2. It's happening - I was right" and "Claude 4 launch has dev moving at a different pace" reflect excitement in the community.
Google I/O: new Gemini native voice, Flash, DeepThink, AI Mode (DeepSearch+Mariner+Astra)
gemini-2.5-pro gemini-2.5 google google-deepmind ai-assistants reasoning generative-ai developer-tools ai-integration model-optimization ai-application model-updates ai-deployment model-performance demishassabis philschmid jack_w_rae
Google I/O 2024 showcased significant advancements with Gemini 2.5 Pro and Deep Think reasoning mode from google-deepmind, emphasizing AI-driven transformations and developer opportunities. GeminiApp aims to become a universal AI assistant on the path to AGI, with new features like AI Mode in Google Search expanding generative AI access. The event included multiple keynotes and updates on over a dozen models and 20+ AI products, highlighting Google's leadership in AI innovation. Influential voices like demishassabis and philschmid provided insights and recaps, while the launch of Jules as a competitor to Codex/Devin was noted.
not much happened today
hunyuan-turbos qwen3-235b-a22b o3 gpt-4.1-nano grok-3 gemini-2.5-pro seed1.5-vl kling-2.0 tencent openai bytedance meta-ai-fair nvidia deepseek benchmarking model-performance moe reasoning vision video-understanding vision-language multimodality model-evaluation model-optimization lmarena_ai artificialanlys gdb _jasonwei iScienceLuvr _akhaliq _philschmid teortaxesTex mervenoyann reach_vb
Tencent's Hunyuan-Turbos has risen to #8 on the LMArena leaderboard, showing strong performance across major categories and significant improvement since February. The Qwen3 model family, especially the Qwen3 235B-A22B (Reasoning) model, is noted for its intelligence and efficient parameter usage. OpenAI introduced HealthBench, a new health evaluation benchmark developed with input from over 250 physicians, where models like o3, GPT-4.1 nano, and Grok 3 showed strong results. ByteDance released Seed1.5-VL, a vision-language model with a 532M-parameter vision encoder and a 20B active parameter MoE LLM, achieving state-of-the-art results on 38 public benchmarks. In vision-language, Kling 2.0 leads image-to-video generation, and Gemini 2.5 Pro excels in video understanding with advanced multimodal capabilities. Meta's Vision-Language-Action framework and updates on VLMs for 2025 were also highlighted.
Prime Intellect's INTELLECT-2 and PRIME-RL advance distributed reinforcement learning
intellect-2 dreamo qwen gemini-2.5-pro dynamic-byte-latent-transformer gen-4-references mistral-medium-3 le-chat-enterprise primeintellect bytedance qwen gemma meta-ai-fair runwayml mistral-ai google distributed-training reinforcement-learning gpu-clusters model-optimization quantization multimodality agentic-ai video-understanding fine-tuning _akhaliq reach_vb osanseviero aiatmeta c_valenzuelab lmarena_ai adcock_brett
Prime Intellect released INTELLECT-2, a decentralized GPU training and RL framework with a vision for distributed AI training overcoming colocation limits. ByteDance launched DreamO, a unified image customization model on Hugging Face. Qwen released models optimized for GPTQ, GGUF, and AWQ quantization. Gemma surpassed 150 million downloads on Hugging Face. Meta released weights for the Dynamic Byte Latent Transformer and the Collaborative Reasoner framework to improve language model efficiency and reasoning. RunwayML introduced Gen-4 References, a near-realtime model requiring no fine-tuning. Mistral AI released Mistral Medium 3, a strong multimodal model, and Le Chat Enterprise, an agentic AI assistant for business. Google updated Gemini 2.5 Pro Preview with video understanding and UI improvements. "Airbnb for spare GPUs from all over the world" highlights the ongoing challenges and potential of distributed GPU training.
not much happened today
open-code-reasoning-32b open-code-reasoning-14b open-code-reasoning-7b mistral-medium-3 llama-4-maverick gemini-2.5-pro gemini-2.5-flash claude-3.7-sonnet absolute-zero-reasoner x-reasoner fastvlm parakeet-asr openai nvidia mistral-ai google apple huggingface reinforcement-learning fine-tuning code-generation reasoning vision on-device-ai model-performance dataset-release model-optimization reach_vb artificialanlys scaling01 iscienceluvr arankomatsuzaki awnihannun risingsayak
OpenAI launched both Reinforcement Finetuning and Deep Research on GitHub repos, drawing comparisons to Cognition's DeepWiki. Nvidia open-sourced Open Code Reasoning models (32B, 14B, 7B) with Apache 2.0 license, showing 30% better token efficiency and compatibility with llama.cpp, vLLM, transformers, and TGI. Independent evaluations highlight Mistral Medium 3 rivaling Llama 4 Maverick, Gemini 2.0 Flash, and Claude 3.7 Sonnet in coding and math reasoning, priced significantly lower but no longer open-source. Google's Gemini 2.5 Pro is noted as their most intelligent model with improved coding from simple prompts, while Gemini 2.5 Flash incurs a 150x cost increase over Gemini 2.0 Flash due to higher token usage and cost. The Absolute Zero Reasoner (AZR) achieves SOTA performance in coding and math reasoning via reinforced self-play without external data. Vision-language model X-REASONER is post-trained on general-domain text for reasoning. Apple ML research released FastVLM with on-device iPhone demo. HiDream LoRA trainer supports QLoRA fine-tuning under memory constraints. Nvidia's Parakeet ASR model tops Hugging Face ASR leaderboard with MLX implementation. New datasets SwallowCode and SwallowMath boost LLM performance in math and code. Overall, a quiet day with significant model releases and performance insights.
ChatGPT responds to GlazeGate + LMArena responds to Cohere
qwen3-235b-a22b qwen3 qwen3-moe llama-4 openai cohere lm-arena deepmind x-ai meta-ai-fair alibaba vllm llamaindex model-releases model-benchmarking performance-evaluation open-source multilinguality model-integration fine-tuning model-optimization joannejang arankomatsuzaki karpathy sarahookr reach_vb
OpenAI faced backlash after a controversial ChatGPT update, leading to an official retraction admitting they "focused too much on short-term feedback." Researchers from Cohere published a paper criticizing LMArena for unfair practices favoring incumbents like OpenAI, DeepMind, X.ai, and Meta AI Fair. The Qwen3 family by Alibaba was released, featuring models up to 235B MoE, supporting 119 languages and trained on 36 trillion tokens, with integration into vLLM and support in tools like llama.cpp. Meta announced the second round of Llama Impact Grants to promote open-source AI innovation. Discussions on AI Twitter highlighted concerns about leaderboard overfitting and fairness in model benchmarking, with notable commentary from karpathy and others.
LlamaCon: Meta AI gets into the Llama API platform business
llama-4 qwen3 qwen3-235b-a22b qwen3-30b-a3b qwen3-4b qwen2-5-72b-instruct o3-mini meta-ai-fair cerebras groq alibaba vllm ollama llamaindex hugging-face llama-cpp model-release fine-tuning reinforcement-learning moe multilingual-models model-optimization model-deployment coding benchmarking apache-license reach_vb huybery teortaxestex awnihannun thezachmueller
Meta celebrated progress in the Llama ecosystem at LlamaCon, launching an AI Developer platform with finetuning and fast inference powered by Cerebras and Groq hardware, though it remains waitlisted. Meanwhile, Alibaba released the Qwen3 family of large language models, including two MoE models and six dense models ranging from 0.6B to 235B parameters, with the flagship Qwen3-235B-A22B achieving competitive benchmark results and supporting 119 languages and dialects. The Qwen3 models are optimized for coding and agentic capabilities, are Apache 2.0 licensed, and have broad deployment support including local usage with tools like vLLM, Ollama, and llama.cpp. Community feedback highlights Qwen3's scalable performance and superiority over models like OpenAI's o3-mini.
not much happened today
nemotron-h nvidia-eagle-2.5 gpt-4o qwen2.5-vl-72b gemini-2.5-flash gemini-2.0-pro gemini-exp-1206 gemma-3 qwen2.5-32b deepseek-r1-zero-32b uni3c seedream-3.0 adobe-dragon kimina-prover qwen2.5-72b bitnet-b1.58-2b4t nvidia deepseek hugging-face alibaba bytedance adobe transformers model-optimization multimodality long-context reinforcement-learning torch-compile image-generation diffusion-models distributional-rewards model-efficiency model-training native-quantization sampling-techniques philschmid arankomatsuzaki osanseviero iScienceLuvr akhaliq
Nemotron-H model family introduces hybrid Mamba-Transformer models with up to 3x faster inference and variants including 8B, 56B, and a compressed 47B model. Nvidia Eagle 2.5 is a frontier VLM for long-context multimodal learning, matching GPT-4o and Qwen2.5-VL-72B on long-video understanding. Gemini 2.5 Flash shows improved dynamic thinking and cost-performance, outperforming previous Gemini versions. Gemma 3 now supports torch.compile for about 60% faster inference on consumer GPUs. SRPO using Qwen2.5-32B surpasses DeepSeek-R1-Zero-32B on benchmarks with reinforcement learning only. Alibaba's Uni3C unifies 3D-enhanced camera and human motion controls for video generation. Seedream 3.0 by ByteDance is a bilingual image generation model with high-resolution outputs up to 2K. Adobe DRAGON optimizes diffusion generative models with distributional rewards. Kimina-Prover Preview is an LLM trained with reinforcement learning from Qwen2.5-72B, achieving 80.7% pass@8192 on miniF2F. BitNet b1.58 2B4T is a native 1-bit LLM with 2B parameters trained on 4 trillion tokens, matching full-precision LLM performance with better efficiency. Antidistillation sampling counters unwanted model distillation by modifying reasoning traces from frontier models.
Cohere's Command A claims #3 open model spot (after DeepSeek and Gemma)
command-a mistral-ai-small-3.1 smoldocling qwen-2.5-vl cohere mistral-ai hugging-face context-windows multilinguality multimodality fine-tuning benchmarking ocr model-performance model-releases model-optimization aidangomez sophiamyang mervenoyann aidan_mclau reach_vb lateinteraction
Cohere's Command A model has solidified its position on the LMArena leaderboard, featuring an open-weight 111B parameter model with an unusually long 256K context window and competitive pricing. Mistral AI released the lightweight, multilingual, and multimodal Mistral AI Small 3.1 model, optimized for single RTX 4090 or Mac 32GB RAM setups, with strong performance on instruct and multimodal benchmarks. The new OCR model SmolDocling offers fast document reading with low VRAM usage, outperforming larger models like Qwen2.5VL. Discussions highlight the importance of system-level improvements over raw LLM advancements, and MCBench is recommended as a superior AI benchmark for evaluating model capabilities across code, aesthetics, and awareness.
DeepSeek's Open Source Stack
qwen-qwq-32b start character-3 gemini gemini-2.0 mercury-coder gpt-4.5 jamba-mini-1.6 gemini-2.0-flash gpt-4o-mini mistral-small-3 mistral-ocr deepseek pyspur hugging-face togethercompute hedra-labs google-deepmind deeplearningai openai ai21-labs mistral-ai fine-tuning benchmarking multimodality code-generation diffusion-models model-performance model-optimization ocr embedding-models context-windows runtime-limits _akhaliq lmarena_ai reach_vb danielhanchen _philschmid aidan_mclau vikhyatk jerryjliu0
DeepSeek's Open Source Week was summarized by PySpur, highlighting multiple interesting releases. The Qwen QwQ-32B model was fine-tuned into START, excelling in PhD-level science QA and math benchmarks. Character-3, an omnimodal AI video generation model by Hedra Labs and Together AI, enables realistic animated content creation. Google DeepMind introduced the Gemini embedding model with an 8k context window, ranking #1 on MMTEB, alongside the Gemini 2.0 Code Executor supporting Python libraries and auto-fix features. Inception Labs' Mercury Coder is a diffusion-based code generation model offering faster token processing. OpenAI released GPT-4.5, their largest model yet but with less reasoning ability than some competitors. AI21 Labs launched Jamba Mini 1.6, noted for superior output speed compared to Gemini 2.0 Flash, GPT-4o mini, and Mistral Small 3. A new dataset of 1.9M scanned pages was released for OCR benchmarking, with Mistral OCR showing competitive but not top-tier document parsing performance compared to LLM/LVM-powered methods. "Cracked engineers are all you need."
not much happened today
chatgpt-4o deepseek-r1 o3 o3-mini gemini-2-flash qwen-2.5 qwen-0.5b hugging-face openai perplexity-ai deepseek-ai gemini qwen metr_evals reasoning benchmarking model-performance prompt-engineering model-optimization model-deployment small-language-models mobile-ai ai-agents speed-optimization _akhaliq aravsrinivas lmarena_ai omarsar0 risingsayak
Smolagents library by Huggingface continues trending. ChatGPT-4o latest version
chatgpt-40-latest-20250129
released. DeepSeek R1 671B sets speed record at 198 t/s, fastest reasoning model, recommended with specific prompt settings. Perplexity Deep Research outperforms models like Gemini Thinking, o3-mini, and DeepSeek-R1 on Humanity's Last Exam benchmark with 21.1% score and 93.9% accuracy on SimpleQA. ChatGPT-4o ranks #1 on Arena leaderboard in multiple categories except math. OpenAI's o3 model powers Deep Research tool for ChatGPT Pro users. Gemini 2 Flash and Qwen 2.5 models support LLMGrading verifier. Qwen 2.5 models added to PocketPal app. MLX shows small LLMs like Qwen 0.5B generate tokens at high speed on M4 Max and iPhone 16 Pro. Gemini Flash 2.0 leads new AI agent leaderboard. DeepSeek R1 is most liked on Hugging Face with over 10 million downloads. Mistral Small 3 24B and Tulu 3 405B
mistral-small-3 tulu-3-405b llama-3 tiny-swallow-1.5b qwen-2.5-max deepseek-v3 claude-3.5-sonnet gemini-1.5-pro gpt4o-mini llama-3-3-70b mistral-ai ai2 sakana-ai alibaba_qwen deepseek ollama llamaindex reinforcement-learning model-fine-tuning local-inference model-performance model-optimization on-device-ai instruction-following api training-data natural-language-processing clementdelangue dchaplot reach_vb
Mistral AI released Mistral Small 3, a 24B parameter model optimized for local inference with low latency and 81% accuracy on MMLU, competing with Llama 3.3 70B, Qwen-2.5 32B, and GPT4o-mini. AI2 released Tülu 3 405B, a large finetuned model of Llama 3 using Reinforcement Learning from Verifiable Rewards (RVLR), competitive with DeepSeek v3. Sakana AI launched TinySwallow-1.5B, a Japanese language model using TAID for on-device use. Alibaba_Qwen released Qwen 2.5 Max, trained on 20 trillion tokens, with performance comparable to DeepSeek V3, Claude 3.5 Sonnet, and Gemini 1.5 Pro, and updated API pricing. These releases highlight advances in open models, efficient inference, and reinforcement learning techniques.
DeepSeek R1: o1-level open weights model and a simple recipe for upgrading 1.5B models to Sonnet/4o level
deepseek-r1 deepseek-v3 qwen-2.5 llama-3.1 llama-3.3-70b deepseek ollama qwen llama reinforcement-learning fine-tuning model-distillation model-optimization reasoning reward-models multi-response-sampling model-training
DeepSeek released DeepSeek R1, a significant upgrade over DeepSeek V3 from just three weeks prior, featuring 8 models including full-size 671B MoE models and multiple distillations from Qwen 2.5 and Llama 3.1/3.3. The models are MIT licensed, allowing finetuning and distillation. Pricing is notably cheaper than o1 by 27x-50x. The training process used GRPO (reward for correctness and style outcomes) without relying on PRM, MCTS, or reward models, focusing on reasoning improvements through reinforcement learning. Distilled models can run on Ollama and show strong capabilities like writing Manim code. The release emphasizes advances in reinforcement-learning, fine-tuning, and model-distillation with a novel RL framework from DeepSeekMath.
not much happened today
helium-1 qwen-2.5 phi-4 sky-t1-32b-preview o1 codestral-25.01 phi-3 mistral llama-3 gpt-3.5 llama-3 gpt-3.5 llmquoter kyutai-labs lmstudio mistralai llamaindex huggingface langchainai hyperbolic-labs replit fchollet philschmid multilinguality token-level-distillation context-windows model-performance open-source reasoning coding retrieval-augmented-generation hybrid-retrieval multiagent-systems video large-video-language-models dynamic-ui voice-interaction gpu-rentals model-optimization semantic-deduplication model-inference reach_vb awnihannun lior_on_ai sophiamyang omarsar0 skirano yuchenj_uw fchollet philschmid
Helium-1 Preview by kyutai_labs is a 2B-parameter multilingual base LLM outperforming Qwen 2.5, trained on 2.5T tokens with a 4096 context size using token-level distillation from a 7B model. Phi-4 (4-bit) was released in lmstudio on an M4 max, noted for speed and performance. Sky-T1-32B-Preview is a $450 open-source reasoning model matching o1's performance with strong benchmark scores. Codestral 25.01 by mistralai is a new SOTA coding model supporting 80+ programming languages and offering 2x speed.
Innovations include AutoRAG for optimizing retrieval-augmented generation pipelines, Agentic RAG for autonomous query reformulation and critique, Multiagent Finetuning using societies of models like Phi-3, Mistral, LLaMA-3, and GPT-3.5 for reasoning improvements, and VideoRAG incorporating video content into RAG with LVLMs.
Applications include a dynamic UI AI chat app by skirano on Replit, LangChain tools like DocTalk for voice PDF conversations, AI travel agent tutorials, and news summarization agents. Hyperbolic Labs offers competitive GPU rentals including H100, A100, and RTX 4090. LLMQuoter enhances RAG accuracy by identifying key quotes.
Infrastructure updates include MLX export for LLM inference from Python to C++ by fchollet and SemHash semantic text deduplication by philschmid.
not much happened today
phi-4 reinforce++ arc-agi-2 ai21-labs ollama langchain togethercompute groq reinforcement-learning ppo model-optimization memory-efficiency python-packages vision text-extraction frontend-code-generation workflow-automation coding-agents compute-cost-reduction ethical-ai agi-benchmarks scam-alerts sebastien-bubeck fchollet tom-doerr arohan_ bindureddy hwchase17 jonathanross321 clementdelangue vikhyatk
Sebastien Bubeck introduced REINFORCE++, enhancing classical REINFORCE with PPO-inspired techniques for 30% faster training. AI21 Labs released Phi-4 under the MIT License, accessible via Ollama. François Chollet announced plans for ARC-AGI-2 and a next-generation AGI benchmark. LangChain launched 10 new integration packages to boost LLM application development. Tom Doerr introduced Ollama-OCR, a Python package for text extraction using vision language models. Arohan optimized Shampoo for memory efficiency, reducing usage from 20 to 6 bytes per parameter. Bindu Reddy showcased CodeLLM's v1 for frontend code generation and highlighted LlamaIndex Workflows for academic summarization and slide generation. Hwchase17 collaborated with Together Compute to enhance WebDev Arena with complex coding agents for LLM coding evaluations. Jonathan Ross detailed Groq's mission to reduce compute costs by 1000x amid rising generative AI spending. Clement Delangue warned about scam alerts involving false claims of association with AI21. Vikhyat K raised concerns about the ethical implications and trade-offs of AGI. Memes and humor included creative AI prompts and critiques of LLM behaviors.
DeepSeek v3: 671B finegrained MoE trained for $5.5m USD of compute on 15T tokens
deepseek-v3 gpt-4o claude-3.5-sonnet llama-3 deepseek-ai hugging-face openai anthropic mixture-of-experts model-training model-optimization reinforcement-learning chain-of-thought multi-token-prediction synthetic-data model-distillation fine-tuning attention-mechanisms gpu-optimization nrehiew_ denny_zhou
DeepSeek-V3 has launched with 671B MoE parameters and trained on 14.8T tokens, outperforming GPT-4o and Claude-3.5-sonnet in benchmarks. It was trained with only 2.788M H800 GPU hours, significantly less than Llama-3's 30.8M GPU-hours, showcasing major compute efficiency and cost reduction. The model is open-source and deployed via Hugging Face with API support. Innovations include native FP8 mixed precision training, Multi-Head Latent Attention scaling, distillation from synthetic reasoning data, pruning and healing for MoEs with up to 256 experts, and a new multi-token prediction objective enabling lookahead token planning. Research highlights also cover the OREO method and Natural Language Reinforcement Learning (NLRL) for multi-step reasoning and agent control.
Meta BLT: Tokenizer-free, Byte-level LLM
byte-latent-transformer llama-3 phi-4 gpt-4o command-r7b meta-ai-fair llamaindex microsoft deepseek-ai openai cohere anthropic tokenization transformer-architecture model-efficiency benchmarking multimodality vision reinforcement-learning model-scaling jailbreaking model-optimization
Meta AI introduces the Byte Latent Transformer (BLT), a tokenizer-free architecture that dynamically forms byte patches for efficient compute allocation, outperforming Llama 3 on benchmarks including the CUTE benchmark. The model was trained on approximately 1 trillion tokens and features a three-block transformer design with local and global components. This approach challenges traditional tokenization and may enable new multimodal capabilities such as direct file interaction without retrieval-augmented generation. Additionally, Microsoft announced the Phi-4 14B parameter model achieving state-of-the-art results on STEM and reasoning benchmarks, surpassing GPT-4o. DeepSeek AI launched new vision-language models based on their MoE architecture with sizes ranging from 1.0B to 27B parameters. OpenAI released a new Projects feature for ChatGPT, and Cohere introduced their smallest and fastest Command R7B model. Anthropic published research on "Best-of-N Jailbreaking" vulnerabilities across text, vision, and audio models. Industry discussion highlights a trend of decreasing frontier LLM sizes, with GPT-4 at approximately 1.8 trillion parameters compared to newer models.
not much happened today
o1-full sora gpt-4.5 gpt-4 claude-3.5-sonnet llama-3-1-nemotron-51b llama-3-1 llama-3 nemotron-51b openai google-deepmind anthropic nvidia huggingface vision model-performance neural-architecture-search model-optimization multimodality model-release model-training reinforcement-learning image-generation lucas-beyer alexander-kolesnikov xiaohua-zhai aidan_mclau giffmana joannejang sama
OpenAI announced their "12 Days of OpenAI" event with daily livestreams and potential releases including the O1 full model, Sora video model, and GPT-4.5. Google DeepMind released the GenCast weather model capable of 15-day forecasts in 8 minutes using TPU chips, and launched Genie 2, a model generating playable 3D worlds from single images. Leading vision researchers Lucas Beyer, Alexander Kolesnikov, and Xiaohua Zhai moved from DeepMind to OpenAI, which is opening a Zürich office. Criticism arose over OpenAI's strategy and model quality compared to Anthropic and Claude 3.5 Sonnet. On Reddit, a modified llama.cpp supports Nvidia's Llama-3_1-Nemotron-51B, matching performance of larger 70B models via NAS optimization.
Olympus has dropped (aka, Amazon Nova Micro|Lite|Pro|Premier|Canvas|Reel)
amazon-nova claude-3 llama-3-70b gemini-1.5-flash gpt-4o amazon anthropic google-deepmind sakana-ai-labs multimodality benchmarking model-merging model-performance model-architecture model-optimization population-based-learning philschmid bindureddy
Amazon announced the Amazon Nova family of multimodal foundation models at AWS Re:Invent, available immediately with no waitlist in configurations like Micro, Lite, Pro, Canvas, and Reel, with Premier and speech-to-speech coming next year. These models offer 2-4x faster token speeds and are 25%-400% cheaper than competitors like Anthropic Claude models, positioning Nova as a serious contender in AI engineering. Pricing undercuts models such as Google DeepMind Gemini Flash 8B, and some Nova models extend context length up to 300k tokens. However, benchmarking controversy exists as some evaluations show Nova scoring below Llama-3 70B in LiveBench AI metrics. Separately, CycleQD was introduced by Sakana AI Labs, using evolutionary computation for population-based model merging to develop niche LLM agents.
Vision Everywhere: Apple AIMv2 and Jina CLIP v2
aimv2-3b jina-clip-v2 tulu-3 llama-3-1 claude-3-5 llama-3-1-70b apple jina allen_ai autoregressive-objectives vision multilinguality multimodality image-generation model-training model-optimization reinforcement-learning fine-tuning model-benchmarking
Apple released AIMv2, a novel vision encoder pre-trained with autoregressive objectives that achieves 89.5% accuracy on ImageNet and integrates joint visual and textual objectives. Jina launched Jina CLIP v2, a multimodal embedding model supporting 89 languages and high-resolution images with efficient Matryoshka embeddings reducing dimensions by 94% with minimal accuracy loss. Allen AI introduced Tülu 3 models based on Llama 3.1 with 8B and 70B parameters, offering 2.5x faster inference and alignment via SFT, DPO, and RLVR methods, competing with Claude 3.5 and Llama 3.1 70B. These developments highlight advances in autoregressive training, vision encoders, and multilingual multimodal embeddings.
Tencent's Hunyuan-Large claims to beat DeepSeek-V2 and Llama3-405B with LESS Data
claude-3.5-haiku llama-3-1 llama-3-2 mlx-lm tencent anthropic meta-ai-fair togethercompute llamaindex mixture-of-experts synthetic-data model-scaling model-architecture model-optimization kv-cache-quantization react fine-tuning scaling-laws model-efficiency model-deployment multimodality
Tencent released a notable >300B parameter MoE model pretrained on 7T tokens, including 1.5T synthetic data generated via Evol-Instruct. The model introduces novel techniques like "recycle routing" and expert-specific learning rates, alongside a compute-efficient scaling law for MoE active parameters. However, its custom license restricts use in the EU and by companies with over 100M MAU, and it avoids China-sensitive queries. Meanwhile, Anthropic launched Claude 3.5 Haiku, now available on multiple platforms, praised for intelligence and speed but criticized for a 10x price increase. Meta opened Llama AI to the U.S. defense sector, and a Llama Impact Hackathon offers a $15K prize for projects using Llama 3.1 & 3.2 Vision. LlamaIndex released a React chat UI component with Tailwind CSS and LLM backend integrations. The MLX LM model advances text generation speed and efficiency with KV cache quantization.
not much happened today
smollm2 llama-3-2 stable-diffusion-3.5 claude-3.5-sonnet gemini openai anthropic google meta-ai-fair suno-ai perplexity-ai on-device-ai model-performance robotics multimodality ai-regulation model-releases natural-language-processing prompt-engineering agentic-ai ai-application model-optimization sam-altman akhaliq arav-srinivas labenz loubnabenallal1 alexalbert fchollet stasbekman svpino rohanpaul_ai hamelhusain
ChatGPT Search was launched by Sam Altman, who called it his favorite feature since ChatGPT's original launch, doubling his usage. Comparisons were made between ChatGPT Search and Perplexity with improvements noted in Perplexity's web navigation. Google introduced a "Grounding" feature in the Gemini API & AI Studio enabling Gemini models to access real-time web information. Despite Gemini's leaderboard performance, developer adoption lags behind OpenAI and Anthropic. SmolLM2, a new small, powerful on-device language model, outperforms Meta's Llama 3.2 1B. A Claude desktop app was released for Mac and Windows. Meta AI announced robotics advancements including Meta Sparsh, Meta Digit 360, and Meta Digit Plexus. Stable Diffusion 3.5 Medium, a 2B parameter model with a permissive license, was released. Insights on AGI development suggest initial inferiority but rapid improvement. Anthropic advocates for early targeted AI regulation. Discussions on ML specialization predict training will concentrate among few companies, while inference becomes commoditized. New AI tools include Suno AI Personas for music creation, PromptQL for natural language querying over data, and Agent S for desktop task automation. Humor was shared about Python environment upgrades.
not much happened this weekend
claude-3.5-sonnet llama-3 llama-3-8b notebookllama min-omni-2 moondream openai anthropic hugging-face mistral-ai google-deepmind langchain deepmind microsoft pattern-recognition reinforcement-learning prompt-optimization text-to-speech model-optimization tensor-parallelism hyperparameters multimodal modal-alignment multimodal-fine-tuning ai-productivity privacy generative-ai rag retrieval-augmentation enterprise-text-to-sql amanda-askell philschmid stasbekman francois-fleuret mervenoyann reach_vb dzhng aravsrinivas sama lateinteraction andrew-y-ng bindureddy jerryjliu0
Moondream, a 1.6b vision language model, secured seed funding, highlighting a trend in moon-themed tiny models alongside Moonshine (27-61m ASR model). Claude 3.5 Sonnet was used for AI Twitter recaps. Discussions included pattern recognition vs. intelligence in LLMs, reinforcement learning for prompt optimization, and NotebookLlama, an open-source NotebookLM variant using LLaMA models for tasks like text-to-speech. Advances in model optimization with async-TP in PyTorch for tensor parallelism and hyperparameter tuning were noted. Mini-Omni 2 demonstrated multimodal capabilities across image, audio, and text for voice conversations with emphasis on modal alignment and multimodal fine-tuning. AI productivity tools like an AI email writer and LlamaCloud-based research assistants were introduced. Emphasis on practical skill development and privacy-conscious AI tool usage with Llama3-8B was highlighted. Generative AI tools such as #AIPythonforBeginners and GenAI Agents with LangGraph were shared. Business insights covered rapid execution in AI product development and emerging AI-related job roles. Challenges in enterprise-grade text-to-SQL and advanced retrieval methods were discussed with tutorials on RAG applications using LangChain and MongoDB.
not much happened today
llama-3.1-nemotron-70b golden-gate-claude embed-3 liquid-ai anthropic cohere openai meta-ai-fair nvidia perplexity-ai langchain kestra ostrisai llamaindex feature-steering social-bias multimodality model-optimization workflow-orchestration inference-speed event-driven-workflows knowledge-backed-agents economic-impact ai-national-security trust-dynamics sam-altman lmarena_ai aravsrinivas svpino richardmcngo ajeya_cotra tamaybes danhendrycks jerryjliu0
Liquid AI held a launch event introducing new foundation models. Anthropic shared follow-up research on social bias and feature steering with their "Golden Gate Claude" feature. Cohere released multimodal Embed 3 embeddings models following Aya Expanse. There was misinformation about GPT-5/Orion debunked by Sam Altman. Meta AI FAIR announced Open Materials 2024 with new models and datasets for inorganic materials discovery using the EquiformerV2 architecture. Anthropic AI demonstrated feature steering to balance social bias and model capabilities. NVIDIA's Llama-3.1-Nemotron-70B ranked highly on the Arena leaderboard with style control. Perplexity AI expanded to 100M weekly queries with new finance and reasoning modes. LangChain emphasized real application integration with interactive frame interpolation. Kestra highlighted scalable event-driven workflows with open-source YAML-based orchestration. OpenFLUX optimized inference speed by doubling it through guidance LoRA training. Discussions on AI safety included trust dynamics between humans and AI, economic impacts of AI automation, and the White House AI National Security memo addressing cyber and biological risks. LlamaIndex showcased knowledge-backed agents for enhanced AI applications.
not much happened today
claude-3.5-sonnet claude-3.5-haiku o1-preview mochi-1 stable-diffusion-3.5 embed-3 kerashub differential-transformer anthropic openai cohere microsoft computer-use coding-performance video-generation fine-tuning multimodality transformers attention-mechanisms model-optimization alexalbert fchollet rasbt
Anthropic released upgraded Claude 3.5 Sonnet and Claude 3.5 Haiku models featuring a new computer use capability that allows interaction with computer interfaces via screenshots and actions like mouse movement and typing. The Claude 3.5 Sonnet achieved state-of-the-art coding performance on SWE-bench Verified with a 49% score, surpassing OpenAI's o1-preview. Anthropic focuses on teaching general computer skills rather than task-specific tools, with expected rapid improvements. Other releases include Mochi 1, an open-source video generation model, Stable Diffusion 3.5 with Large and Medium variants, and Embed 3 by Cohere, a multimodal embedding model for text and image search. KerasHub was launched by François Chollet, unifying KerasNLP and KerasCV with 37 pretrained models. Microsoft introduced the Differential Transformer to reduce attention noise via differential attention maps, and research on transformer attention layers was shared by Rasbt.
DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing
bitnet-b1.58 llama-3.1-nemotron-70b-instruct gpt-4o claude-3.5-sonnet uc-berkeley deepmind openai microsoft nvidia archetype-ai boston-dynamics toyota-research google adobe openai mistral tesla meta-ai-fair model-optimization on-device-ai fine-tuning large-corpus-processing gpu-acceleration frameworks model-benchmarking rohanpaul_ai adcock_brett david-patterson
UC Berkeley's EPIC lab introduces innovative LLM data operators with projects like LOTUS and DocETL, focusing on effective programming and computation over large data corpora. This approach contrasts GPU-rich big labs like Deepmind and OpenAI with GPU-poor compound AI systems. Microsoft open-sourced BitNet b1.58, a 1-bit ternary parameter LLM enabling 4-20x faster training and on-device inference at human reading speeds. Nvidia released Llama-3.1-Nemotron-70B-Instruct, a fine-tuned open-source model outperforming GPT-4o and Claude-3.5-sonnet. These developments highlight advances in model-optimization, on-device-ai, and fine-tuning.
DeepSeek Janus and Meta SpiRit-LM: Decoupled Image and Expressive Voice Omnimodality
nemotron-70b claude claude-3.5-sonnet gpt-4o deepseek meta-ai-fair wandb nvidia anthropic hugging-face perplexity-ai multimodality image-generation speech-synthesis fine-tuning model-merging benchmarking open-source model-optimization reinforcement-learning bindureddy aravsrinivas danielhanchen clementdelangue cwolferesearch
DeepSeek Janus and Meta SpiRit-LM are two notable multimodality AI models recently released, showcasing advances in image generation and speech synthesis respectively. DeepSeek Janus separates vision encoders for image understanding and generation, achieving better results in both tasks. Meta's SpiRit-LM introduces an expressive speech and writing model generating pitch and style units, improving over standard TTS. Additionally, W&B Weave offers comprehensive LLM observability and multimodality fine-tuning tools. Industry updates include Nvidia's Nemotron 70b model underperforming, Meta open-sourcing Movie Gen Bench for media generation benchmarking, Perplexity launching internal search with multi-step reasoning, and Anthropic updating Claude apps. Open source progress includes Hugging Face's gradient accumulation fix in transformers and advocacy for open source AI to prevent Big Tech dominance. "Model merging for combining skills of multiple models" is also highlighted.
not much happened today
llama mistral openai decagon sierra togethercompute vertical-saas funding protein-structure-prediction lora self-supervised-learning model-optimization neural-architecture-search model-evaluation ethics transformers multi-agent-systems long-context mira-murati demis-hassabis clement-delangue john-o-whitaker yann-lecun francois-chollet ajeya-cotra rohan-paul adcock-brett
Vertical SaaS agents are gaining rapid consensus as the future of AI applications, highlighted by Decagon's $100m funding and Sierra's $4b round. OpenAI alumni are actively raising venture capital and forming new startups, intensifying competition in the AI market. Demis Hassabis celebrated the Nobel Prize recognition for AlphaFold2, a breakthrough in protein structure prediction. Advances in AI models include techniques like LoRA projectors and annealing on high-quality data, while discussions emphasize the need for high-bandwidth sensory inputs beyond language for common sense learning. New methods like LoLCATs aim to optimize transformer models such as Llama and Mistral for efficiency. Ethical concerns about AI agents performing harmful tasks remain under investigation. The AI community continues to explore model evaluation challenges and optimization frameworks like LPZero for neural architecture search.
Not much technical happened today
whisper-v3-turbo llama-3 llamaindex openai poolside liquidai perplexity-ai meta-ai-fair cohere fujitsu mixture-of-experts context-windows model-optimization fine-tuning quantization model-training alignment synthetic-data model-architecture agentic-ai nick-turley arav-srinivas francois-fleuret finbarr-timbers lewtun francois-chollet jerry-j-liu mmitchell-ai jxnlco
OpenAI announced raising $6.6B in new funding at a $157B valuation, with ChatGPT reaching 250M weekly active users. Poolside raised $500M to advance AGI development. LiquidAI introduced three new MoE models (1B, 3B, 40B) with a 32k context window and efficient token handling. OpenAI released Whisper V3 Turbo, an open-source multilingual model with significant speed improvements. Meta AI FAIR is hiring research interns focusing on LLM reasoning, alignment, synthetic data, and novel architectures. Cohere partnered with Fujitsu to launch Takane, a custom Japanese model. Technical discussions included challenges in LoRA fine-tuning, float8 quantization in Keras, and new tools like create-llama for agent templates. Industry commentary raised concerns about AI development priorities and highlighted freelancing opportunities in AI.
not much happened today
llama-3-2 llama-3 gemma-2 phi-3-5-mini claude-3-haiku gpt-4o-mini molmo gemini-1.5 gemini meta-ai-fair openai allenai google-deepmind multimodality model-optimization benchmarks ai-safety model-distillation pruning adapter-layers open-source-models performance context-windows mira-murati demis-hassabis ylecun sama
Meta AI released Llama 3.2 models including 1B, 3B text-only and 11B, 90B vision variants with 128K token context length and adapter layers for image-text integration. These models outperform competitors like Gemma 2 and Phi 3.5-mini, and are supported on major platforms including AWS, Azure, and Google Cloud. OpenAI CTO Mira Murati announced her departure. Allen AI released Molmo, an open-source multimodal model family outperforming proprietary systems. Google improved Gemini 1.5 with Flash and Pro models. Meta showcased Project Orion AR glasses and hinted at a Quest 3S priced at $300. Discussions covered new benchmarks for multimodal models, model optimization, and AI safety and alignment.
Llama 3.2: On-device 1B/3B, and Multimodal 11B/90B (with AI2 Molmo kicker)
llama-3-2 llama-3-1 claude-3-haiku gpt-4o-mini molmo-72b molmo-7b gemma-2 phi-3-5 llama-3-2-vision llama-3-2-3b llama-3-2-20b meta-ai-fair ai2 qualcomm mediatek arm ollama together-ai fireworks-ai weights-biases cohere weaviate multimodality vision context-windows quantization model-release tokenization model-performance model-optimization rag model-training instruction-following mira-murati daniel-han
Meta released Llama 3.2 with new multimodal versions including 3B and 20B vision adapters on a frozen Llama 3.1, showing competitive performance against Claude Haiku and GPT-4o-mini. AI2 launched multimodal Molmo 72B and 7B models outperforming Llama 3.2 in vision tasks. Meta also introduced new 128k-context 1B and 3B models competing with Gemma 2 and Phi 3.5, with collaborations hinted with Qualcomm, Mediatek, and Arm for on-device AI. The release includes a 9 trillion token count for Llama 1B and 3B. Partner launches include Ollama, Together AI offering free 11B model access, and Fireworks AI. Additionally, a new RAG++ course from Weights & Biases, Cohere, and Weaviate offers systematic evaluation and deployment guidance for retrieval-augmented generation systems based on extensive production experience.
a calm before the storm
o1 o1-mini qwen2.5 gpt-4 llama-2-70b llama-7b anthropic openai alibaba microsoft blackrock groq aramco disney eth-zurich pudu-robotics slack long-context kv-cache-quantization diffusion-models reinforcement-learning robotics ai-integration multilinguality model-benchmarking model-performance model-optimization adcock_brett philschmid rohanpaul_ai jvnixon kateclarktweets sama
Anthropic is raising funds at a valuation up to $40 billion ahead of anticipated major releases. OpenAI launched new reasoning models o1 and o1-mini, with increased rate limits and a multilingual MMLU benchmark. Alibaba released the open-source Qwen2.5 model supporting 29+ languages, showing competitive performance to gpt-4 at lower cost. Microsoft and Blackrock plan to invest $30 billion in AI data centers, with Groq partnering with Aramco to build the world's largest AI inference center. Robotics advances include Disney Research and ETH Zurich's diffusion-based motion generation for robots and Pudu Robotics' semi-humanoid robot. Slack and Microsoft introduced AI-powered agents integrated into their platforms. Research highlights include long-context scaling for llama-2-70b using Dual Chunk Attention and KV cache quantization enabling 1 million token context on llama-7b models.
Cerebras Inference: Faster, Better, AND Cheaper
llama-3.1-8b llama-3.1-70b gemini-1.5-flash gemini-1.5-pro cogvideox-5b mamba-2 rene-1.3b llama-3.1 gemini-1.5 claude groq cerebras cursor google-deepmind anthropic inference-speed wafer-scale-chips prompt-caching model-merging benchmarking open-source-models code-editing model-optimization jeremyphoward sam-altman nat-friedman daniel-gross swyx
Groq led early 2024 with superfast LLM inference speeds, achieving ~450 tokens/sec for Mixtral 8x7B and 240 tokens/sec for Llama 2 70B. Cursor introduced a specialized code edit model hitting 1000 tokens/sec. Now, Cerebras claims the fastest inference with their wafer-scale chips, running Llama3.1-8b at 1800 tokens/sec and Llama3.1-70B at 450 tokens/sec at full precision, with competitive pricing and a generous free tier. Google's Gemini 1.5 models showed significant benchmark improvements, especially Gemini-1.5-Flash and Gemini-1.5-Pro. New open-source models like CogVideoX-5B and Mamba-2 (Rene 1.3B) were released, optimized for consumer hardware. Anthropic's Claude now supports prompt caching, improving speed and cost efficiency. "Cerebras Inference runs Llama3.1 20x faster than GPU solutions at 1/5 the price."
Ideogram 2 + Berkeley Function Calling Leaderboard V2
llama-3-70b gpt-4 phi-3.5 functionary-llama-3-70b llama-3 ideogram midjourney berkeley openai hugging-face microsoft meta-ai-fair baseten kai claude functionary function-calling benchmarking image-generation model-optimization vision multimodality model-performance fine-tuning context-windows cybersecurity code-analysis ai-assisted-development
Ideogram returns with a new image generation model featuring color palette control, a fully controllable API, and an iOS app, reaching a milestone of 1 billion images created. Meanwhile, Midjourney released a Web UI but still lacks an API. In function calling, the Berkeley Function Calling Leaderboard (BFCL) updated to BFCL V2 • Live, adding 2251 live, user-contributed function documentation and queries to improve evaluation quality. GPT-4 leads the leaderboard, but the open-source Functionary Llama 3-70B finetune from Kai surpasses Claude. On AI model releases, Microsoft launched three Phi-3.5 models with impressive reasoning and context window capabilities, while Meta AI FAIR introduced UniBench, a unified benchmark suite for over 50 vision-language model tasks. Baseten improved Llama 3 inference speed by up to 122% using Medusa. A new cybersecurity benchmark, Cyberbench, featuring 40 CTF tasks, was released. Additionally, Codegen was introduced as a tool for programmatic codebase analysis and AI-assisted development. "Multiple functions > parallel functions" was highlighted as a key insight in function calling.
The DSPy Roadmap
dspy litel-lm gemini chatgpt-4o grok-2 hermes-3 databricks mit google openai x-ai nous-research astribot apple sakana-ai model-optimization fine-tuning optimizers interactive-optimization robotics autonomous-systems voice image-generation open-source-models scientific-research streaming caching omar-khattab giffmana
Omar Khattab announced joining Databricks before his MIT professorship and outlined the roadmap for DSPy 2.5 and 3.0+, focusing on improving core components like LMs, signatures, optimizers, and assertions with features such as adopting LiteLLM to reduce code and enhance caching and streaming. The roadmap also includes developing more accurate, cost-effective optimizers, building tutorials, and enabling interactive optimization tracking. On AI Twitter, Google launched Gemini Live, a mobile conversational AI with voice and 10 voices, alongside Pixel Buds Pro 2 with a custom Tensor A1 chip. OpenAI updated ChatGPT-4o, reclaiming the top spot on LMSYS Arena. xAI released Grok-2 in beta, achieving SOTA in image generation with FLUX 1. Nous Research released open-source Hermes 3 models in 8B, 70B, and 405B sizes, with the 405B model achieving SOTA. Robotics updates include Astribot's humanoid robot and Apple's tabletop robot with Siri voice commands. Sakana AI introduced "The AI Scientist," an autonomous AI research system.
DataComp-LM: the best open-data 7B model/benchmark/dataset
mistral-nemo-12b gpt-4o-mini deepseek-v2-0628 mistral-7b llama-3 gemma-2 qwen-2 datacomp hugging-face openai nvidia mistral-ai deepseek dataset-design scaling-laws model-benchmarking model-performance fine-tuning multilinguality function-calling context-windows open-source-models model-optimization cost-efficiency benchmarking sam-altman guillaume-lample philschmid miramurati
DataComp team released a competitive 7B open data language model trained on only 2.5T tokens from the massive DCLM-POOL dataset of 240 trillion tokens, showing superior scaling trends compared to FineWeb. OpenAI launched GPT-4o mini, a cost-effective model with 82% MMLU and performance near GPT-4-Turbo, aimed at developers for broad applications. NVIDIA and Mistral jointly released the Mistral NeMo 12B model featuring a 128k token context window, FP8 checkpoint, multilingual support, and Apache 2.0 licensing. DeepSeek announced DeepSeek-V2-0628 as the top open-source model on the LMSYS Chatbot Arena leaderboard with strong rankings in coding, math, and hard prompts. This news highlights advances in dataset design, model efficiency, and open-source contributions in the AI community.
Mini, Nemo, Turbo, Lite - Smol models go brrr (GPT4o-mini version)
gpt-4o-mini deepseek-v2-0628 mistral-nemo llama-8b openai deepseek-ai mistral-ai nvidia meta-ai-fair hugging-face langchain keras cost-efficiency context-windows open-source benchmarking neural-networks model-optimization text-generation fine-tuning developer-tools gpu-support parallelization cuda-integration multilinguality long-context article-generation liang-wenfeng
OpenAI launched the GPT-4o Mini, a cost-efficient small model priced at $0.15 per million input tokens and $0.60 per million output tokens, aiming to replace GPT-3.5 Turbo with enhanced intelligence but some performance limitations. DeepSeek open-sourced DeepSeek-V2-0628, topping the LMSYS Chatbot Arena Leaderboard and emphasizing their commitment to contributing to the AI ecosystem. Mistral AI and NVIDIA released the Mistral NeMo, a 12B parameter multilingual model with a record 128k token context window under an Apache 2.0 license, sparking debates on benchmarking accuracy against models like Meta Llama 8B. Research breakthroughs include the TextGrad framework for optimizing compound AI systems via textual feedback differentiation and the STORM system improving article writing by 25% through simulating diverse perspectives and addressing source bias. Developer tooling trends highlight LangChain's evolving context-aware reasoning applications and the Modular ecosystem's new official GPU support, including discussions on Mojo and Keras 3.0 integration.
Qdrant's BM42: "Please don't trust us"
claude-3.5-sonnet gemma-2 nano-llava-1.5 qdrant cohere stripe anthropic hugging-face stablequan_ai semantic-search benchmarking dataset-quality model-evaluation model-optimization vision fine-tuning context-windows nils-reimers jeremyphoward hamelhusain rohanpaul_ai
Qdrant attempted to replace BM25 and SPLADE with a new method called "BM42" combining transformer attention and collection-wide statistics for semantic and keyword search, but their evaluation using the Quora dataset was flawed. Nils Reimers from Cohere reran BM42 on better datasets and found it underperformed. Qdrant acknowledged the errors but still ran a suboptimal BM25 implementation. This highlights the importance of dataset choice and evaluation sanity checks in search model claims. Additionally, Stripe faced criticism for AI/ML model failures causing account and payment issues, prompting calls for alternatives. Anthropic revealed that Claude 3.5 Sonnet suppresses some answer parts with backend tags, sparking debate. Gemma 2 model optimizations allow 2x faster fine-tuning with 63% less memory and longer context windows, running up to 34B parameters on consumer GPUs. nanoLLaVA-1.5 was announced as a compact 1B parameter vision model with significant improvements.
RouteLLM: RIP Martian? (Plus: AINews Structured Summaries update)
gpt-4 gemma-2-27b gemma-2-9b lmsys openai llm-routing cost-efficiency model-performance model-optimization data-augmentation syntax-based-routing mixture-of-experts inference-throughput software-2.0 computer-vision karpathy bindureddy armand-joulin
LMSys introduces RouteLLM, an open-source router framework trained on preference data from Chatbot Arena, achieving cost reductions over 85% on MT Bench, 45% on MMLU, and 35% on GSM8K while maintaining 95% of GPT-4's performance. This approach surpasses previous task-specific routing by using syntax-based Mixture of Experts (MoE) routing and data augmentation, beating commercial solutions by 40%. The update highlights advances in LLM routing, cost-efficiency, and model performance optimization across multiple models rather than single-model or MoE-level improvements. Additionally, the AI Twitter recap notes the Gemma 2 model family as a top open model, the Block Transformer architecture for improved inference throughput, and a proposal for a fully Software 2.0 computer vision system by karpathy.
That GPT-4o Demo
gpt-4o gemma-2 meta-code-llama openai google-deepmind meta-ai-fair voice-generation ocr screen-sharing vision code-understanding model-customization efficiency textual-intelligence multimodal-agents sft distillation rlhf model-merging model-optimization safety romain-huet fchollet
Romain Huet demonstrated an unreleased version of GPT-4o on ChatGPT Desktop showcasing capabilities like low latency voice generation, whisper tone moderation, camera mode streaming video to GPT-4o, rapid OCR, screen sharing with ChatGPT for programming help, clipboard reading, and vision-based code conversation. OpenAI's four investment areas highlighted include textual intelligence, efficiency/cost, model customization, and multimodal agents. Google DeepMind released Gemma 2 models in 9B and 27B sizes trained on 8T and 13T tokens respectively, using SFT, distillation, RLHF, and model merging, optimized for TPUv5e with strong performance and safety measures. Meta AI announced the Meta LLM Compiler built on Meta Code Llama with enhanced code optimization and compiler features.
Gemma 2: The Open Model for Everyone
gemma-2 qwen-72b mixtral-8x22b-instruct claude-3.5-sonnet google-deepmind alibaba mistral-ai anthropic knowledge-distillation attention-mechanisms multilingual-models multimodality model-training model-optimization memory-optimization fine-tuning kathleen-kenealy daniel-han
Gemma 2, a 27B parameter model from google-deepmind, was released with innovations like 1:1 local-global attention alternation and logit soft-capping, leveraging knowledge distillation to train smaller models on over 50× the compute-optimal token quantity. The model supports multilingual and multimodal capabilities, with fine-tuning success on over 200 Indic language variants. The Open LLM Leaderboard highlights alibaba's Qwen 72B as the top model, with mistral-ai's Mixtral-8x22B-Instruct also ranking highly. Anthropic launched Claude 3.5 Sonnet, improving intelligence at mid-tier cost and speed. Research on eliminating matrix multiplication in LLMs promises significant memory savings without performance loss. Kathleen Kenealy and Daniel Han provided insights on Gemma 2's tokenizer and attention scaling respectively.
Claude Crushes Code - 92% HumanEval and Claude.ai Artifacts
claude-3.5-sonnet claude-3-opus gpt-4o anthropic openai cognition benchmarking model-performance coding model-optimization fine-tuning instruction-following model-efficiency model-release api performance-optimization alex-albert
Claude 3.5 Sonnet, released by Anthropic, is positioned as a Pareto improvement over Claude 3 Opus, operating at twice the speed and costing one-fifth as much. It achieves state-of-the-art results on benchmarks like GPQA, MMLU, and HumanEval, surpassing even GPT-4o and Claude 3 Opus on vision tasks. The model demonstrates significant advances in coding capabilities, passing 64% of test cases compared to 38% for Claude 3 Opus, and is capable of autonomously fixing pull requests. Anthropic also introduced the Artifacts feature, enabling users to interact with AI-generated content such as code snippets and documents in a dynamic workspace, similar to OpenAI's Code Interpreter. This release highlights improvements in performance, cost-efficiency, and coding proficiency, signaling a growing role for LLMs in software development.
Talaria: Apple's new MLOps Superweapon
gemma mixtral phi dbrx apple google mistral-ai microsoft mosaic quantization on-device-ai adapter-models model-optimization model-latency lossless-quantization low-bit-palletization token-generation model-benchmarking human-evaluation craig-federighi andrej-karpathy
Apple Intelligence introduces a small (~3B parameters) on-device model and a larger server model running on Apple Silicon with Private Cloud Compute, aiming to surpass Google Gemma, Mistral Mixtral, Microsoft Phi, and Mosaic DBRX. The on-device model features a novel lossless quantization strategy using mixed 2-bit and 4-bit LoRA adapters averaging 3.5 bits-per-weight, enabling dynamic adapter hot-swapping and efficient memory management. Apple credits the Talaria tool for optimizing quantization and model latency, achieving about 0.6 ms time-to-first-token latency and 30 tokens per second generation rate on iPhone 15 Pro. Apple focuses on an "adapter for everything" strategy with initial deployment on SiriKit and App Intents. Performance benchmarks rely on human graders, emphasizing consumer-level adequacy over academic dominance. The Apple ML blog also mentions an Xcode code-focused model and a diffusion model for Genmoji.
Not much happened today
gemini-1.5-flashmodel gemini-pro mixtral mamba-2 phi-3-medium phi-3-small gpt-3.5-turbo-0613 llama-3-8b llama-2-70b mistral-finetune twelve-labs livekit groq openai nea nvidia lmsys mistral-ai model-performance prompt-engineering data-curation ai-safety model-benchmarking model-optimization training sequence-models state-space-models daniel-kokotajlo rohanpaul_ai _arohan_ tri_dao _albertgu _philschmid sarahcat21 hamelhusain jachiam0 willdepue teknium1
Twelve Labs raised $50m in Series A funding co-led by NEA and NVIDIA's NVentures to advance multimodal AI. Livekit secured $22m in funding. Groq announced running at 800k tokens/second. OpenAI saw a resignation from Daniel Kokotajlo. Twitter users highlighted Gemini 1.5 FlashModel for high performance at low cost and Gemini Pro ranking #2 in Japanese language tasks. Mixtral models can run up to 8x faster on NVIDIA RTX GPUs using TensorRT-LLM. Mamba-2 model architecture introduces state space duality for larger states and faster training, outperforming previous models. Phi-3 Medium (14B) and Small (7B) models benchmark near GPT-3.5-Turbo-0613 and Llama 3 8B. Prompt engineering is emphasized for unlocking LLM capabilities. Data quality is critical for model performance, with upcoming masterclasses on data curation. Discussions on AI safety include a Frontier AI lab employee letter advocating whistleblower protections and debates on aligning AI to user intent versus broader humanity interests.
Skyfall
gemini-1.5-pro gemini-1.5-flash yi-1.5 kosmos-2.5 paligemma falcon-2 deepseek-v2 hunyuan-dit gemini-1.5 gemini-1.5-flash yi-1.5 google-deepmind yi-ai microsoft hugging-face langchain maven multimodality mixture-of-experts transformer model-optimization long-context model-performance model-inference fine-tuning local-ai scaling-laws causal-models hallucination-detection model-distillation model-efficiency hamel-husain dan-becker clement-delangue philschmid osanseviero arankomatsuzaki jason-wei rohanpaul_ai
Between 5/17 and 5/20/2024, key AI updates include Google DeepMind's Gemini 1.5 Pro and Flash models, featuring sparse multimodal MoE architecture with up to 10M context and a dense Transformer decoder that is 3x faster and 10x cheaper. Yi AI released Yi-1.5 models with extended context windows of 32K and 16K tokens. Other notable releases include Kosmos 2.5 (Microsoft), PaliGemma (Google), Falcon 2, DeepSeek v2 lite, and HunyuanDiT diffusion model. Research highlights feature an Observational Scaling Laws paper predicting model performance across families, a Layer-Condensed KV Cache technique boosting inference throughput by up to 26×, and the SUPRA method converting LLMs into RNNs for reduced compute costs. Hugging Face expanded local AI capabilities enabling on-device AI without cloud dependency. LangChain updated its v0.2 release with improved documentation. The community also welcomed a new LLM Finetuning Discord by Hamel Husain and Dan Becker for Maven course users. "Hugging Face is profitable, or close to profitable," enabling $10 million in free shared GPUs for developers.
Google I/O in 60 seconds
gemini-1.5-pro gemini-flash gemini-ultra gemini-pro gemini-nano gemma-2 llama-3-70b paligemma imagen-3 veo google google-deepmind youtube tokenization model-performance fine-tuning vision multimodality model-release model-training model-optimization ai-integration image-generation watermarking hardware-optimization voice video-understanding
Google announced updates to the Gemini model family, including Gemini 1.5 Pro with 2 million token support, and the new Gemini Flash model optimized for speed with 1 million token capacity. The Gemini suite now includes Ultra, Pro, Flash, and Nano models, with Gemini Nano integrated into Chrome 126. Additional Gemini features include Gemini Gems (custom GPTs), Gemini Live for voice conversations, and Project Astra, a live video understanding assistant. The Gemma model family was updated with Gemma 2 at 27B parameters, offering near-llama-3-70b performance at half the size, plus PaliGemma, a vision-language open model inspired by PaLI-3. Other launches include DeepMind's Veo, Imagen 3 for photorealistic image generation, and a Music AI Sandbox collaboration with YouTube. SynthID watermarking now extends to text, images, audio, and video. The Trillium TPUv6 codename was revealed. Google also integrated AI across its product suite including Workspace, Email, Docs, Sheets, Photos, Search, and Lens. "The world awaits Apple's answer."
GPT-4o: the new SOTA-EVERYTHING Frontier model (GPT4O version)
gpt-4o gpt-4-turbo openai lmsys multion adept multimodality vision speech-recognition tokenization real-time-processing coding model-performance model-optimization desktop-agents sama gdb
OpenAI has released GPT-4o, a new multimodal model capable of reasoning across text, audio, and video in real time with low latency (~300ms). It features voice and vision capabilities, improved non-English language performance with an expanded 200k vocabulary tokenizer, and is available to all ChatGPT users including free plans. GPT-4o is half the price and twice as fast as GPT-4-turbo with 5x rate limits. The model supports real-time voice and video input/output and shows strong coding capabilities. The release includes a new desktop app that can read screen and clipboard history, challenging existing desktop agent startups. The announcement was accompanied by demos including image generation and 3D object handling, with OpenAI achieving state-of-the-art performance in ASR and vision tasks. The update was widely discussed on social media, with comparisons to GPT-4T highlighting GPT-4o's speed and versatility. "GPT-4o is smart, fast, natively multimodal, and a step towards more natural human-computer interaction" and "extremely versatile and fun to play with".
A quiet weekend
llama-3 dolphin-2.9 pixart-sigma llama-3-70b microsoft coca-cola uber lmsys nous-research mistral-ai ar-interfaces transformers algorithmic-tasks turing-test graph-algorithms embeddings generative-ai model-optimization llm-inference quantization model-deployment yann-lecun
Yann LeCun predicts a shift to AR interfaces with AI assistants in 10-15 years, moving away from smartphones. The Dolphin-2.9 model based on Llama-3 was released, improving quality issues. PixArt Sigma, a 0.6B parameter model, achieves Stable Diffusion 3.0 level performance with complete prompt adherence and local usability. Research shows transformers can use meaningless filler tokens for algorithmic tasks with dense supervision. AI-generated restaurant reviews can pass the Turing test, fooling humans and AI detectors. Uber uses graph algorithms and learned embeddings for ETA prediction. Coca-Cola and Microsoft announced a 5-year AI partnership to accelerate cloud and generative AI initiatives. The Llama-3 70B model can run on a single 4GB GPU using AirLLM optimization without quantization but is slow. Mistral.rs is introduced as a fast LLM inference platform with quantization and OpenAI API compatibility. Only 5% of LLMs make it from prototype to production due to challenges, especially in enterprise. EXL2 and GGUF quantization methods for Llama models show similar perplexity vs model size, with Llama-3 and Llama-2 degrading more under quantization compared to full precision.
Anime pfp anon eclipses $10k A::B prompting challenge
command-r-plus-104b stable-diffusion-1.5 openai ollama huggingface quantization model-optimization streaming prompt-engineering self-prompting image-composition character-lora-training model-size open-source-licenses memes humor victor-taelin futuristfrog
Victor Taelin issued a $10k challenge to GPT models, initially achieving only 10% success with state-of-the-art models, but community efforts surpassed 90% success within 48 hours, highlighting GPT capabilities and common skill gaps. In Reddit AI communities, Command R Plus (104B) is running quantized on M2 Max hardware via Ollama and llama.cpp forks, with GGUF quantizations released on Huggingface. Streaming text-to-video generation is now available through the st2v GitHub repo. WD Tagger v3 was released for mass auto-captioning datasets with a WebUI. Lesser-known prompting techniques like self-tagging and generational frameworks produced thought-provoking outputs in OpenAI discussions, including experiments with self-evolving system prompts. Stable Diffusion users discussed image composition importance for training character LoRAs and best checkpoints for video game character generation. Discussions also covered scarcity of 5B parameter models and open(ish) licenses for open source AI. Memes included jokes about ChatGPT and Gemini training data differences.
Evals-based AI Engineering
jamba bamboo qwen-1.5-moe grok-1.5 llama2-7b openai mistral-ai x-ai llamaindex evaluation fine-tuning prompt-engineering voice-cloning quantization model-optimization code-generation context-windows hamel-husain alec-radford
Hamel Husain emphasizes the importance of comprehensive evals in AI product development, highlighting evaluation, debugging, and behavior change as key iterative steps. OpenAI released a voice engine demo showcasing advanced voice cloning from small samples, raising safety concerns. Reddit discussions introduced new models like Jamba (hybrid Transformer-SSM with MoE), Bamboo (7B LLM with high sparsity based on Mistral), Qwen1.5-MoE (efficient parameter activation), and Grok 1.5 (128k context length, surpassing GPT-4 in code generation). Advances in quantization include 1-bit Llama2-7B models outperforming full precision and the QLLM quantization toolbox supporting GPTQ/AWQ/HQQ methods.
Jamba: Mixture of Architectures dethrones Mixtral
jamba dbrx mixtral animatediff fastsd sdxs512-0.9 b-lora supir ai21-labs databricks together-ai hugging-face midjourney mixture-of-experts model-architecture context-windows model-optimization fine-tuning image-generation video-generation cpu-optimization style-content-separation high-resolution-upscaling
AI21 labs released Jamba, a 52B parameter MoE model with 256K context length and open weights under Apache 2.0 license, optimized for single A100 GPU performance. It features a unique blocks-and-layers architecture combining transformer and MoE layers, competing with models like Mixtral. Meanwhile, Databricks introduced DBRX, a 36B active parameter MoE model trained on 12T tokens, noted as a new standard for open LLMs. In image generation, advancements include Animatediff for video-quality image generation and FastSD CPU v1.0.0 beta 28 enabling ultra-fast image generation on CPUs. Other innovations involve style-content separation using B-LoRA and improvements in high-resolution image upscaling with SUPIR.
The Era of 1-bit LLMs
bitnet-b1.58 hugging-face quantization model-optimization energy-efficiency fine-tuning robotics multimodality ai-security ethics humor swyx levelsio gdb npew _akhaliq osanseviero mmitchell_ai deliprao nearcyan clementdelangue
The Era of 1-bit LLMs research, including the BitNet b1.58 model, introduces a ternary parameter approach that matches full-precision Transformer LLMs in performance while drastically reducing energy costs by 38x. This innovation promises new scaling laws and hardware designs optimized for 1-bit LLMs. Discussions on AI Twitter highlight advances in AGI societal impact, robotics with multimodal models, fine-tuning techniques like ResLoRA, and AI security efforts at Hugging Face. Ethical considerations in generative AI and humor within the AI community are also prominent topics.
Welcome Interconnects and OpenRouter
mistral-large miqu mixtral gpt-4 mistral-7b mistral-ai openai perplexity-ai llamaindex qwen langchain model-comparison model-optimization quantization role-playing story-writing code-clarity ai-assisted-decompilation asynchronous-processing quantum-computing encoder-based-diffusion open-source hardware-experimentation rag-systems nathan-lambert alex-atallah
Discord communities analyzed 22 guilds, 349 channels, and 12885 messages revealing active discussions on model comparisons and optimizations involving Mistral AI, Miqu, and GGUF quantized models. Highlights include comparing Mistral Large with GPT-4, focusing on cost-effectiveness and performance, and exploring quantization techniques like GPTQ and QLORA to reduce VRAM usage. Advanced applications such as role-playing, story-writing, code clarity, and AI-assisted decompilation were emphasized, alongside development of tools like an asynchronous summarization script for Mistral 7b. The intersection of quantum computing and AI was discussed, including DARPA-funded projects and encoder-based diffusion techniques for image processing. Community efforts featured new Spanish LLM announcements, hardware experimentation, and open-source initiatives, with platforms like Perplexity AI and LlamaIndex noted for innovation and integration. Speculation about Mistral AI's open-source commitment and tools like R2R for rapid RAG deployment highlighted collaborative spirit.
Mistral Large disappoints
mistral-large mistral-small mixtral-8x7b gpt-4-turbo dreamgen-opus-v1 mistral-ai openai hugging-face benchmarking model-merging fine-tuning reinforcement-learning model-training tokenization model-optimization ai-assisted-decompilation performance cost-efficiency deception roleplay deep-speed dpo timotheeee1 cogbuji plasmator jsarnecki maldevide spottyluck mrjackspade
Mistral announced Mistral Large, a new language model achieving 81.2% accuracy on MMLU, trailing GPT-4 Turbo by about 5 percentage points on benchmarks. The community reception has been mixed, with skepticism about open sourcing and claims that Mistral Small outperforms the open Mixtral 8x7B. Discussions in the TheBloke Discord highlighted performance and cost-efficiency comparisons between Mistral Large and GPT-4 Turbo, technical challenges with DeepSpeed and DPOTrainer for training, advances in AI deception for roleplay characters using DreamGen Opus V1, and complexities in model merging using linear interpolation and PEFT methods. Enthusiasm for AI-assisted decompilation was also expressed, emphasizing the use of open-source projects for training data.
Karpathy emerges from stealth?
mistral-7b mixtral-8x7b zephyr-7b gpt-4 llama-2 intel mistral-ai audiogen thebloke tokenization quantization model-optimization fine-tuning model-merging computational-efficiency memory-optimization retrieval-augmented-generation multi-model-learning meta-reasoning dataset-sharing open-source ethical-ai community-collaboration andrej-karpathy
Andrej Karpathy released a comprehensive 2-hour tutorial on tokenization, detailing techniques up to GPT-4's tokenizer and noting the complexity of Llama 2 tokenization with SentencePiece. Discussions in AI Discord communities covered model optimization and efficiency, focusing on quantization of models like Mistral 7B and Zephyr-7B to reduce memory usage for consumer GPUs, including Intel's new weight-only quantization algorithm. Efforts to improve computational efficiency included selective augmentation reducing costs by 57.76% and memory token usage versus kNN for Transformers. Challenges in hardware compatibility and software issues were shared, alongside fine-tuning techniques such as LoRA and model merging. Innovative applications of LLMs in retrieval-augmented generation (RAG), multi-model learning, and meta-reasoning were explored. The community emphasized dataset sharing, open-source releases like SDXL VAE encoded datasets and Audiogen AI codecs, and ethical AI use with censorship and guardrails. Collaboration and resource sharing remain strong in these AI communities.
AI2 releases OLMo - the 4th open-everything LLM
olmo-1b olmo-7b olmo-65b miqu-70b mistral-medium distilbert-base-uncased ai2 allenai mistral-ai tsmc asml zeiss fine-tuning gpu-shortage embedding-chunking json-generation model-optimization reproducible-research self-correction vram-constraints programming-languages nathan-lambert lhc1921 mrdragonfox yashkhare_ gbourdin
AI2 is gaining attention in 2024 with its new OLMo models, including 1B and 7B sizes and a 65B model forthcoming, emphasizing open and reproducible research akin to Pythia. The Miqu-70B model, especially the Mistral Medium variant, is praised for self-correction and speed optimizations. Discussions in TheBloke Discord covered programming language preferences, VRAM constraints for large models, and fine-tuning experiments with Distilbert-base-uncased. The Mistral Discord highlighted challenges in the GPU shortage affecting semiconductor production involving TSMC, ASML, and Zeiss, debates on open-source versus proprietary models, and fine-tuning techniques including LoRA for low-resource languages. Community insights also touched on embedding chunking strategies and JSON output improvements.
Miqu confirmed to be an early Mistral-medium checkpoint
miqu-1-70b mistral-medium llama-2-70b-chat mixtral sqlcoder-70b codellama-70b bagelmistery-tour-v2 psyfighter-v2 mistral-ai hugging-face nous-research aiatmeta instruction-following sampling-methods fp16-quantization fine-tuning model-training context-length text-to-sql model-performance model-optimization intrstllrninja
Miqu, an open access model, scores 74 on MMLU and 84.5 on EQ-Bench, sparking debates about its performance compared to Mistral Medium. The CEO of Mistral confirmed these results. Discussions in the TheBloke Discord highlight Miqu's superiority in instruction-following and sampling methods like dynatemp and min-p. Developers also explore browser preferences and Discord UI themes. Role-playing with models like BagelMistery Tour v2 and Psyfighter v2 is popular, alongside technical talks on fp16 quantization of Miqu-1-70b. Training and fine-tuning tips for models like Unsloth and Mistral 7B are shared. In the Nous Research AI Discord, the Activation Beacon method is discussed for extending LLM context length from 4K to 400K tokens. SQLCoder-70B, fine-tuned on CodeLlama-70B, leads in text-to-SQL generation and is available on Hugging Face. The Miqu model also impresses with an 83.5 EQ-Bench score, fueling speculation about its capabilities.
RWKV "Eagle" v5: Your move, Mamba
rwkv-v5 mistral-7b miqu-1-70b mistral-medium llama-2 mistral-instruct-v0.2 mistral-tuna llama-2-13b kunoichi-dpo-v2-7b gpt-4 eleutherai mistral-ai hugging-face llamaindex nous-research rwkv lmsys fine-tuning multilinguality rotary-position-embedding model-optimization model-performance quantization speed-optimization prompt-engineering model-benchmarking reinforcement-learning andrej-karpathy
RWKV v5 Eagle was released with better-than-mistral-7b evaluation results, trading some English performance for multilingual capabilities. The mysterious miqu-1-70b model sparked debate about its origins, possibly a leak or distillation of Mistral Medium or a fine-tuned Llama 2. Discussions highlighted fine-tuning techniques, including the effectiveness of 1,000 high-quality prompts over larger mixed-quality datasets, and tools like Deepspeed, Axolotl, and QLoRA. The Nous Research AI community emphasized the impact of Rotary Position Embedding (RoPE) theta settings on LLM extrapolation, improving models like Mistral Instruct v0.2. Speed improvements in Mistral Tuna kernels reduced token processing costs, enhancing efficiency. The launch of Eagle 7B with 7.52B parameters showcased strong multilingual performance, surpassing other 7B class models.
GPT4Turbo A/B Test: gpt-4-0125-preview
gpt-4-turbo gpt-4-1106-preview gpt-3.5 llama-2-7b-chat tiny-llama mistral openai thebloke nous-research hugging-face multi-gpu-support model-optimization model-merging fine-tuning context-windows chatbot-personas api-performance text-transcription cost-considerations model-troubleshooting
OpenAI released a new GPT-4 Turbo version in January 2024, prompting natural experiments in summarization and discussions on API performance and cost trade-offs. The TheBloke Discord highlighted UnSloth's upcoming limited multi-GPU support for Google Colab beginners, AI models like Tiny Llama and Mistral running on Nintendo Switch, and advanced model merging techniques such as DARE and SLERP. The OpenAI Discord noted issues with GPT-4-1106-preview processing delays, troubleshooting GPT model errors, and transcription challenges with GPT-3.5 and GPT-4 Turbo. Nous Research AI focused on extending context windows, notably LLaMA-2-7B-Chat reaching 16,384 tokens, and fine-tuning alternatives like SelfExtend. Discussions also touched on chatbot persona creation, model configuration optimizations, and societal impacts of AI technology.
12/25/2023: Nous Hermes 2 Yi 34B for Christmas
nous-hermes-2 yi-34b nucleusx yayi-2 ferret teknim nous-research apple mixtral deepseek qwen huggingface wenge-technology quantization model-optimization throughput-metrics batch-processing parallel-decoding tensor-parallelization multimodality language-model-pretraining model-benchmarking teknium carsonpoole casper_ai pradeep1148 osanseviero metaldragon01
Teknium released Nous Hermes 2 on Yi 34B, positioning it as a top open model compared to Mixtral, DeepSeek, and Qwen. Apple introduced Ferret, a new open-source multimodal LLM. Discussions in the Nous Research AI Discord focused on AI model optimization and quantization techniques like AWQ, GPTQ, and AutoAWQ, with insights on proprietary optimization and throughput metrics. Additional highlights include the addition of NucleusX Model to transformers, a 30B model with 80 MMLU, and the YAYI 2 language model by Wenge Technology trained on 2.65 trillion tokens. "AutoAWQ outperforms vLLM up to batch size 8" was noted, and proprietary parallel decoding and tensor parallelization across GPUs were discussed for speed improvements.